Independence and domination in Polygon Graphs

Abstract Given an integer k, k≥3, we define the class of k-polygon graphs to be the intersection graphs of straight-line chords inside a convex k-gon. Thus, permutation graphs form a proper subset of any such class. Moreover, circle graphs = ∪∞k=3 k-polygon graphs. In this paper, we show polynomial time exact algorithms for solving the maximum r-independent set problem (finding a maximum subset of vertices that can be partitioned into r independent sets) and the minimum dominating set problem on k-polygen graphs, for any fixed k.

[1]  Majid Sarrafzadeh,et al.  A new approach to topological via minimization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  Toshinobu Kashiwabara,et al.  Exact algorithms for multilayer topological via minimization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[4]  Chi-Ping Hsu Minimum-Via Topological Routing , 1983, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  J. Mark Keil The Complexity of Domination Problems in Circle Graphs , 1993, Discret. Appl. Math..

[6]  Sumio Masuda,et al.  The Via Minimization Problem is NP-Complete , 1989, IEEE Trans. Computers.

[7]  Martin Farber,et al.  Domination in Permutation Graphs , 1985, J. Algorithms.

[8]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[9]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[10]  Fanica Gavril,et al.  Algorithms for a maximum clique and a maximum independent set of a circle graph , 1973, Networks.

[11]  Malgorzata Marek-Sadowska An Unconstrained Topological Via Minimization Problem for Two-Layer Routing , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.