Bioelectromagnetism in Human Brain Research: New Applications, New Questions

Bioelectromagnetism has contributed some of the most commonly used techniques to human neuroscience such as magnetoencephalography (MEG), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and transcranial electric stimulation (TES). The considerable differences in their technical design and practical use give rise to the impression that these are quite different techniques altogether. Here, we review, discuss and illustrate the fundamental principle of Helmholtz reciprocity that provides a common ground for all four techniques. We show that, more than 150 years after its discovery by Helmholtz in 1853, reciprocity is important to appreciate the strengths and limitations of these four classical tools in neuroscience. We build this case by explaining the concept of Helmholtz reciprocity, presenting a methodological account of this principle for all four methods and, finally, by illustrating its application in practical clinical studies.

[1]  J. Haueisen,et al.  Individually optimized multi-channel tDCS for targeting somatosensory cortex , 2021, Clinical Neurophysiology.

[2]  M. Junghöfer,et al.  Transcranial direct current stimulation of the ventromedial prefrontal cortex modulates perceptual and neural patterns of fear generalization. , 2021, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[3]  S. Noachtar,et al.  Acute effects of spaced cathodal transcranial direct current stimulation in drug resistant focal epilepsies , 2021, Clinical Neurophysiology.

[4]  Richard M. Leahy,et al.  Realistic head modeling of electromagnetic brain activity: an integrated Brainstorm-DUNEuro pipeline from MRI data to the FEM solutions , 2021 .

[5]  Yoshio Okada,et al.  Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings , 2020, IEEE Transactions on Biomedical Engineering.

[6]  Carsten H. Wolters,et al.  DUNEuro—A software toolbox for forward modeling in bioelectromagnetism , 2019, PloS one.

[7]  C. Wolters,et al.  Parametrizing the Conditionally Gaussian Prior Model for Source Localization with Reference to the P20/N20 Component of Median Nerve SEP/SEF , 2020, Brain sciences.

[8]  M. Clerc,et al.  A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources , 2020, Human brain mapping.

[9]  Michalis E. Zervakis,et al.  Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models , 2020, NeuroImage.

[10]  Matthew J. Brookes,et al.  Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system , 2020, NeuroImage.

[11]  Chunyan Liu,et al.  Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: A randomized, double-blind, sham-controlled, and three-arm parallel multicenter study , 2020, Brain Stimulation.

[12]  Andreas K. Engel,et al.  Individual Targeting Increases Control Over Inter-Individual Variability in Simulated Transcranial Electric Fields , 2020, IEEE Access.

[13]  M. Nitsche,et al.  Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex , 2019, Scientific Reports.

[14]  J. Gross Magnetoencephalography in Cognitive Neuroscience: A Primer , 2019, Neuron.

[15]  Carsten H. Wolters,et al.  Individualized Targeting and Optimization of Multi-channel Transcranial Direct Current Stimulation in Drug-Resistant Epilepsy , 2019, 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE).

[16]  Lauri Parkkonen,et al.  Potential of on‐scalp MEG: Robust detection of human visual gamma‐band responses , 2019, Human brain mapping.

[17]  Michael Buchfelder,et al.  Magnetoencephalography for epileptic focus localization in a series of 1000 cases. , 2019, Brain : a journal of neurology.

[18]  Carsten H. Wolters,et al.  Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction , 2019, Front. Neurosci..

[19]  Robert Chen,et al.  Clinical utility and prospective of TMS–EEG , 2019, Clinical Neurophysiology.

[20]  Lauri Parkkonen,et al.  Potential of on-scalp MEG: Robust detection of human visual gamma-band responses , 2019, bioRxiv.

[21]  Kristoffer Hougaard Madsen,et al.  A principled approach to conductivity uncertainty analysis in electric field calculations , 2019, NeuroImage.

[22]  Carlos Muravchik,et al.  Unification of optimal targeting methods in transcranial electrical stimulation , 2019, NeuroImage.

[23]  M. Murray,et al.  Electroencephalography , 2019, Current Biology.

[24]  Aapo Nummenmaa,et al.  Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS) , 2019, Journal of neural engineering.

[25]  Ole Jensen,et al.  Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance , 2019, NeuroImage.

[26]  Gilles Cauffet,et al.  Magnetoencephalography With Optically Pumped 4He Magnetometers at Ambient Temperature , 2019, IEEE Transactions on Medical Imaging.

[27]  Alexander Opitz,et al.  On the importance of precise electrode placement for targeted transcranial electric stimulation , 2018, NeuroImage.

[28]  Matthew R. Krause,et al.  Immediate neurophysiological effects of transcranial electrical stimulation , 2018, Nature Communications.

[29]  J. Schoffelen,et al.  Best Practices in Data Analysis and Sharing in Neuroimaging using MEEG , 2018 .

[30]  A. Puce,et al.  IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) , 2018, Clinical Neurophysiology.

[31]  Carsten H. Wolters,et al.  Noninvasive stimulation of the ventromedial prefrontal cortex modulates emotional face processing , 2018, NeuroImage.

[32]  Hartwig R. Siebner,et al.  Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art , 2018, NeuroImage.

[33]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[34]  C. Herrmann,et al.  Optimized auditory transcranial alternating current stimulation improves individual auditory temporal resolution , 2018, Brain Stimulation.

[35]  Markus Siegel,et al.  Analyzing EEG and MEG signals recorded during tES, a reply , 2018, NeuroImage.

[36]  C. Pantev,et al.  Randomized trial of transcranial direct current stimulation for poststroke dysphagia , 2018, Annals of neurology.

[37]  Peter Zwanzger,et al.  Modulating Emotion Perception: Opposing Effects of Inhibitory and Excitatory Prefrontal Cortex Stimulation. , 2017, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[38]  Lucas C. Parra,et al.  Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline , 2017, bioRxiv.

[39]  J. Rothwell,et al.  tDCS changes in motor excitability are specific to orientation of current flow , 2017, Brain Stimulation.

[40]  M. Nitsche,et al.  Studying and modifying brain function with non-invasive brain stimulation , 2018, Nature Neuroscience.

[41]  A. Bonci,et al.  Rehabilitating the addicted brain with transcranial magnetic stimulation , 2017, Nature Reviews Neuroscience.

[42]  S. Rossi,et al.  Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines , 2017, Clinical Neurophysiology.

[43]  J. Gross,et al.  Role of the Cerebellum in Adaptation to Delayed Action Effects , 2017, Current Biology.

[44]  Gregor Thut,et al.  Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation , 2017, Front. Aging Neurosci..

[45]  Dean Sabatinelli,et al.  Noninvasive Stimulation of the Ventromedial Prefrontal Cortex Enhances Pleasant Scene Processing , 2017, Cerebral cortex.

[46]  Suhasa B. Kodandaramaiah,et al.  Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields , 2017, Cell.

[47]  T. Knösche,et al.  Zoomed MRI Guided by Combined EEG/MEG Source Analysis: A Multimodal Approach for Optimizing Presurgical Epilepsy Work-up and its Application in a Multi-focal Epilepsy Patient Case Study , 2017, Brain Topography.

[48]  C. Miniussi,et al.  Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper , 2017, Clinical Neurophysiology.

[49]  Riitta Hari,et al.  MEG–EEG Primer , 2017 .

[50]  Sylvain Baillet,et al.  Magnetoencephalography for brain electrophysiology and imaging , 2017, Nature Neuroscience.

[51]  Toralf Neuling,et al.  Faith and oscillations recovered: On analyzing EEG/MEG signals during tACS , 2017, NeuroImage.

[52]  L. Parra,et al.  Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation , 2017, Brain Stimulation.

[53]  Christoph Braun,et al.  Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS) , 2016, NeuroImage.

[54]  Ole Jensen,et al.  On the relationship between cortical excitability and visual oscillatory responses — A concurrent tDCS–MEG study , 2016, NeuroImage.

[55]  Hartwig R. Siebner,et al.  Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives , 2016, NeuroImage.

[56]  C. Herrmann,et al.  Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner , 2016, Scientific Reports.

[57]  A. Aarabi,et al.  EEG Resting State Functional Connectivity Analysis in Children with Benign Epilepsy with Centrotemporal Spikes , 2016, Front. Neurosci..

[58]  Martin Burger,et al.  Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem , 2016, NeuroImage.

[59]  J. Voges,et al.  Lesion guided stereotactic radiofrequency thermocoagulation for palliative, in selected cases curative epilepsy surgery , 2016, Epilepsy Research.

[60]  Scott Makeig,et al.  Simultaneous head tissue conductivity and EEG source location estimation , 2016, NeuroImage.

[61]  Martin Burger,et al.  An Optimization Approach for Well-Targeted Transcranial Direct Current Stimulation , 2015, SIAM J. Appl. Math..

[62]  Ursula van Rienen,et al.  Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target , 2015, Journal of neural engineering.

[63]  M. Piradov,et al.  Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation , 2015, Front. Hum. Neurosci..

[64]  D. Senkowski,et al.  Dysfunctional Prefrontal Gamma-Band Oscillations Reflect Working Memory and Other Cognitive Deficits in Schizophrenia , 2015, Biological Psychiatry.

[65]  Thomas R. Knösche,et al.  A guideline for head volume conductor modeling in EEG and MEG , 2014, NeuroImage.

[66]  D. Stegeman,et al.  Investigation of tDCS volume conduction effects in a highly realistic head model , 2014, Journal of neural engineering.

[67]  G. A. Miller,et al.  Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. , 2014, Psychophysiology.

[68]  Peter T. Fox,et al.  PET-Based Confirmation of Orientation Sensitivity of TMS-Induced Cortical Activation in Humans , 2013, Brain Stimulation.

[69]  C. Herrmann,et al.  Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes , 2013, Front. Hum. Neurosci..

[70]  Joachim Gross,et al.  Good practice for conducting and reporting MEG research , 2013, NeuroImage.

[71]  Lucas C. Parra,et al.  Subject position affects EEG magnitudes , 2013, NeuroImage.

[72]  M. Clerc,et al.  Comparison of Boundary Element and Finite Element Approaches to the EEG Forward Problem , 2012, Biomedizinische Technik. Biomedical engineering.

[73]  M. Koenigs,et al.  Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders , 2012, Molecular Psychiatry.

[74]  Romain Brette,et al.  Handbook of neural activity measurement , 2012 .

[75]  L. Parra,et al.  Optimized multi-electrode stimulation increases focality and intensity at target , 2011, Journal of neural engineering.

[76]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[77]  Théodore Papadopoulo,et al.  The adjoint method for general EEG and MEG sensor-based lead field equations , 2009, Physics in medicine and biology.

[78]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[79]  G. Tononi,et al.  Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. , 2008, American Journal of Psychiatry.

[80]  George Dassios,et al.  On the complementarity of electroencephalography and magnetoencephalography , 2007 .

[81]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[82]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[83]  Xavier Tricoche,et al.  Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling , 2006, NeuroImage.

[84]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[85]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[86]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[87]  Gareth R. Barnes,et al.  Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain , 2004, NeuroImage.

[88]  C. H. Wolters,et al.  Comparing Regularized and Non-Regularized Nonlinear Dipole Fit Methods: A Study in a Simulated Sulcus Structure , 2004, Brain Topography.

[89]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[90]  W. Hackbusch,et al.  Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem. Part I: Complexity Considerations , 2003 .

[91]  J. Haueisen,et al.  The Influence of Brain Tissue Anisotropy on Human EEG and MEG , 2002, NeuroImage.

[92]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[93]  A. Schnitzler,et al.  Dynamic imaging of coherent sources: Studying neural interactions in the human brain. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[94]  R. Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[95]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[96]  J. D. Munck,et al.  A fast method to compute the potential in the multisphere model (EEG application) , 1993, IEEE Transactions on Biomedical Engineering.

[97]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[98]  S. Boniface,et al.  Magnetic brain stimulation with a double coil: the importance of coil orientation. , 1992, Electroencephalography and clinical neurophysiology.

[99]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[100]  D. A. Driscoll,et al.  EEG electrode sensitivity--an application of reciprocity. , 1969, IEEE transactions on bio-medical engineering.

[101]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .