Curious cyclic sieving on increasing tableaux

We prove a cyclic sieving result for the set of 3 × k packed increasing tableaux with maximum entry m := 3 + k under K-promotion. The “curiosity” is that the sieving polynomial arises from the q-hook formula for standard tableaux of “toothbrush shape” (2, 1) with m+1 boxes, whereas K-promotion here only has order m.

[1]  Brendon Rhoades,et al.  Cyclic sieving, promotion, and representation theory , 2010, J. Comb. Theory, Ser. A.

[2]  B. Sagan Surveys in Combinatorics 2011: The cyclic sieving phenomenon: a survey , 2010, 1008.0790.

[3]  Alexander Schrijver,et al.  On the period of an operator, defined on antichains , 1974 .

[4]  Jessica Striker Dynamical Algebraic Combinatorics: Promotion, Rowmotion, and Resonance , 2017 .

[5]  Richard P. Stanley,et al.  Promotion and Evacuation , 2008, Electron. J. Comb..

[7]  Jessica Striker,et al.  Resonance in orbits of plane partitions and increasing tableaux , 2015, J. Comb. Theory, Ser. A.

[8]  Alexander Yong,et al.  A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus , 2007, 0705.2915.

[9]  Oliver Pechenik Cyclic sieving of increasing tableaux and small Schröder paths , 2014, J. Comb. Theory, Ser. A.

[10]  B. Rhoades A skein action of the symmetric group on noncrossing partitions , 2015, 1501.04680.

[11]  Nathan Williams,et al.  Promotion and rowmotion , 2011, Eur. J. Comb..

[13]  Victor Reiner,et al.  The cyclic sieving phenomenon , 2004, J. Comb. Theory A.

[14]  Tom Roby,et al.  Dynamical algebraic combinatorics and the homomesy phenomenon , 2016 .

[15]  Peter J. Cameron,et al.  Orbits of antichains revisited , 1995, Eur. J. Comb..

[16]  Oliver Pechenik Promotion of Increasing Tableaux: Frames and Homomesies , 2017, Electron. J. Comb..

[17]  Oliver Pechenik,et al.  Orbits of plane partitions of exceptional Lie type , 2018, Eur. J. Comb..

[18]  Connor Ahlbach,et al.  Refined cyclic sieving on words for the major index statistic , 2018, Eur. J. Comb..