Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses.

[1]  M. McCarter,et al.  BRAF fusions identified in melanomas have variable treatment responses and phenotypes , 2018, Oncogene.

[2]  S. Ou,et al.  Receptor Tyrosine Kinase Fusions and BRAF Kinase Fusions are Rare but Actionable Resistance Mechanisms to EGFR Tyrosine Kinase Inhibitors , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[3]  M. Aoki,et al.  Acquired JHDM1D–BRAF Fusion Confers Resistance to FGFR Inhibition in FGFR2-Amplified Gastric Cancer , 2018, Molecular Cancer Therapeutics.

[4]  M. Ladanyi,et al.  Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance , 2018, Clinical Cancer Research.

[5]  R. Verhaak,et al.  The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations , 2017, bioRxiv.

[6]  P. Poulikakos,et al.  New perspectives for targeting RAF kinase in human cancer , 2017, Nature Reviews Cancer.

[7]  A. Resnick,et al.  CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles , 2017, Oncogene.

[8]  G. Mills,et al.  Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. , 2017, Cancer research.

[9]  H. Kim,et al.  Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition , 2017, Oncogene.

[10]  W. Hahn,et al.  A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas , 2017, Neuro-oncology.

[11]  E. White,et al.  BRAF Fusion as a Novel Mechanism of Acquired Resistance to Vemurafenib in BRAFV600E Mutant Melanoma , 2017, Clinical Cancer Research.

[12]  Donavan T. Cheng,et al.  Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients , 2017, Nature Medicine.

[13]  David T. W. Jones,et al.  Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing , 2016, Oncotarget.

[14]  D. Wheeler,et al.  Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. , 2016, Blood.

[15]  I. Yeh,et al.  NTRK3 kinase fusions in Spitz tumours , 2016, The Journal of pathology.

[16]  M. Herlyn,et al.  An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. , 2016, Cancer cell.

[17]  D. Adams,et al.  BRAFV600E Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts , 2016, Cell reports.

[18]  Jesse R. Dixon,et al.  Chromatin Domains: The Unit of Chromosome Organization. , 2016, Molecular cell.

[19]  M. Berger,et al.  BRAF Status in Personalizing Treatment Approaches for Pediatric Gliomas , 2016, Clinical Cancer Research.

[20]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[21]  B. Taylor,et al.  Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. , 2016, Cancer discovery.

[22]  R. Dummer,et al.  The Genetic Evolution of Melanoma from Precursor Lesions. , 2015, The New England journal of medicine.

[23]  James Tsai,et al.  RAF inhibitors that evade paradoxical MAPK pathway activation , 2015, Nature.

[24]  O. Abdel-Wahab,et al.  BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine Their Sensitivity to Pharmacologic Inhibition. , 2015, Cancer cell.

[25]  Kai Wang,et al.  The distribution of BRAF gene fusions in solid tumors and response to targeted therapy , 2015, International journal of cancer.

[26]  I. Yeh,et al.  Clinical activity of the MEK inhibitor trametinib in metastatic melanoma containing BRAF kinase fusion , 2015, Pigment cell & melanoma research.

[27]  Ozlem Keskin,et al.  GTP-Dependent K-Ras Dimerization. , 2015, Structure.

[28]  D. Adams,et al.  Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts , 2015, EMBO molecular medicine.

[29]  Xiaolin Nan,et al.  Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway , 2015, Proceedings of the National Academy of Sciences.

[30]  I. Yeh,et al.  Activating MET Kinase Rearrangements in Melanoma and Spitz Tumors , 2015, Nature Communications.

[31]  J. Larkin,et al.  Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. , 2015, Cancer cell.

[32]  O. Kallioniemi,et al.  FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data , 2014, bioRxiv.

[33]  R. Verhaak,et al.  The landscape and therapeutic relevance of cancer-associated transcript fusions , 2014, Oncogene.

[34]  David T. W. Jones,et al.  Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. , 2014, Neuro-oncology.

[35]  P. Stephens,et al.  Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. , 2014, Cancer discovery.

[36]  Nicolas Stransky,et al.  The landscape of kinase fusions in cancer , 2014, Nature Communications.

[37]  Iwei Yeh,et al.  Kinase fusions are frequent in Spitz tumours and spitzoid melanomas , 2014, Nature Communications.

[38]  V. Miller,et al.  Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein , 2014, Journal of Hematology & Oncology.

[39]  P. Stephens,et al.  BRAF Fusions Define a Distinct Molecular Subset of Melanomas with Potential Sensitivity to MEK Inhibition , 2013, Clinical Cancer Research.

[40]  Iwei Yeh,et al.  Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy , 2013, Pigment cell & melanoma research.

[41]  Christopher E Mason,et al.  Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. , 2013, The Journal of clinical investigation.

[42]  Susan S. Taylor,et al.  Allosteric Activation of Functionally Asymmetric RAF Kinase Dimers , 2013, Cell.

[43]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[44]  A. Resnick,et al.  Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas , 2013, Proceedings of the National Academy of Sciences.

[45]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[46]  A. von Deimling,et al.  Distinct requirement for an intact dimer interface in wild‐type, V600E and kinase‐dead B‐Raf signalling , 2012, The EMBO journal.

[47]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[48]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[49]  P. Bahadoran,et al.  Signalling and chemosensitivity assays in melanoma: is mutated status a prerequisite for targeted therapy? , 2011, Experimental dermatology.

[50]  Tom Misteli,et al.  RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E) , 2011, Nature.

[51]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[52]  Michael C. Rusch,et al.  CREST maps somatic structural variation in cancer genomes with base-pair resolution , 2011, Nature Methods.

[53]  H. P. Kang,et al.  Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals , 2011, Nature Genetics.

[54]  T. M. Rünger,et al.  No formation of DNA double-strand breaks and no activation of recombination repair with UVA. , 2011, The Journal of investigative dermatology.

[55]  David T. W. Jones,et al.  Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma , 2011, Acta Neuropathologica.

[56]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[57]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[58]  Francesca Demichelis,et al.  Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma , 2010, Nature Medicine.

[59]  M. Belvin,et al.  RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth , 2010, Nature.

[60]  Chao Zhang,et al.  RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF , 2010, Nature.

[61]  M. Barbacid,et al.  Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival , 2010, The EMBO journal.

[62]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[63]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[64]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[65]  T. Misteli,et al.  Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing , 2008, Nature Cell Biology.

[66]  L. Pease,et al.  Gene splicing and mutagenesis by PCR-driven overlap extension , 2007, Nature Protocols.

[67]  H. Wichmann,et al.  The epidemiology of nevi and signs of skin aging in the adult general population: Results of the KORA-survey 2000. , 2006, The Journal of investigative dermatology.

[68]  M. Nikiforova,et al.  Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. , 2005, The Journal of clinical investigation.

[69]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[70]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[71]  D. Bennett,et al.  A line of non‐tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth , 1987, International journal of cancer.

[72]  T. D. Hamilton,et al.  Classification of Tumours , 1930, Edinburgh medical journal.

[73]  Margaret A Tucker Melanoma epidemiology. , 2009, Hematology/oncology clinics of North America.