Importance Sampling for Backward SDEs

In this article, we explain how the importance sampling technique can be generalized from simulating expectations to computing the initial value of backward stochastic differential equations (SDEs) with Lipschitz continuous driver. By means of a measure transformation we introduce a variance reduced version of the forward approximation scheme by Bender and Denk [4] for simulating backward SDEs. A fully implementable algorithm using the least-squares Monte Carlo approach is developed and its convergence is proved. The success of the generalized importance sampling is illustrated by numerical examples in the context of Asian option pricing under different interest rates for borrowing and lending.

[1]  G. Pagès,et al.  A quantization algorithm for solving multidimensional discrete-time optimal stopping problems , 2003 .

[2]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[3]  D. Belomestny,et al.  TRUE UPPER BOUNDS FOR BERMUDAN PRODUCTS VIA NON‐NESTED MONTE CARLO , 2009 .

[4]  K. Ponnambalam,et al.  Variance reduction for Monte Carlo simulation of stochastic environmental models , 2002 .

[5]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[6]  Yaacov Z. Bergman Option Pricing with Differential Interest Rates , 1995 .

[7]  Céline Labart EDSR: analyse de discrétisation et résolution par méthodes de Monte Carlo adaptatives; Perturbation de domaines pour les options américaines , 2007 .

[8]  Peter Shirley,et al.  Monte Carlo and Quasi-Monte Carlo Methods for Computer Graphics , 2008 .

[9]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[10]  Giray Ökten,et al.  On pricing discrete barrier options using conditional expectation and importance sampling Monte Carlo , 2008, Math. Comput. Model..

[11]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[12]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[13]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[14]  G. N. Milstein,et al.  Monte Carlo construction of hedging strategies against multi-asset European claims , 2002 .

[15]  Mohamed Karim Sbai,et al.  Exact retrospective Monte Carlo computation of arithmetic average Asian options , 2007, Monte Carlo Methods Appl..

[16]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[17]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[18]  Dirk Becherer Bounded solutions to backward SDE's with jumps for utility optimization and indifference hedging , 2006 .

[19]  Robert Denk,et al.  A forward scheme for backward SDEs , 2007 .

[20]  Nigel J. Newton Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..

[21]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[22]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[23]  Yun S. Song,et al.  Importance sampling and the two-locus model with subdivided population structure , 2008, Advances in Applied Probability.

[24]  P. Glasserman,et al.  Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options , 1999 .

[25]  B Lapeyre,et al.  Competitive Monte Carlo methods for the pricing of Asian options , 1999 .

[26]  Paolo Guasoni,et al.  Optimal importance sampling with explicit formulas in continuous time , 2007, Finance Stochastics.

[27]  S. Menozzi,et al.  A Forward-Backward Stochastic Algorithm For Quasi-Linear PDEs , 2006, math/0603250.

[28]  Christian Bender,et al.  Time discretization and Markovian iteration for coupled FBSDEs , 2008, 0801.3203.