Characterization and optimization of a printed, primary silver–zinc battery

Abstract The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags has resulted in a need for high energy microbatteries. Printed batteries are particularly interesting because of the potential for low material loss, low processing cost, and ease of integration into low-profile flexible electronic systems. We have developed a two-step printing technique to deposit an alkaline electrolyte for a printed silver–zinc battery. The fabricated batteries are characterized with galvanostatic measurements and electrochemical impedance spectroscopy using a three electrode setup with a zinc reference electrode. High silver utilization of 94 ± 3% and an areal energy density of 4.1 ± 0.3 mWh cm−2 are achieved with a 57:29:14 H2O:KOH:PEO (Mv = 600,000) electrolyte at a C/2 discharge rate 1.8 mA cm−2.

[1]  A. Fitt,et al.  Simultaneous measurements of conductivity and thickness for polymer electrolyte films: a simulation study , 2002 .

[2]  Klaus Finkenzeller,et al.  Book Reviews: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed. , 2004, ACM Queue.

[3]  A. P. Karpinski,et al.  Silver–zinc: status of technology and applications , 1999 .

[4]  Hod Lipson,et al.  Freeform fabrication of zinc‐air batteries and electromechanical assemblies , 2004 .

[5]  K. Kordesch,et al.  A study of rechargeable zinc electrodes for alkaline cells requiring anodic limitation , 1981 .

[6]  Daniel W. Engels,et al.  Radio Frequency Identification and the Electronic Product Code , 2001, IEEE Micro.

[7]  Vivek Subramanian,et al.  Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics , 2003 .

[8]  Vivek Subramanian,et al.  Printable polythiophene gas sensor array for low-cost electronic noses , 2006 .

[9]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[10]  Teruhisa Komura,et al.  Electron and ion transport in polypyrrole/polystyrenesulfonate composite films , 1998 .

[11]  Yunhong Zhou,et al.  Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution , 1998 .

[12]  Andrzej Lewandowski,et al.  Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte , 2000 .

[13]  Daniel A. Steingart,et al.  A super ink jet printed zinc–silver 3D microbattery , 2009 .

[14]  J. Randin Determination of state-of-discharge of zinc-silver oxide button cells. III. In situ impedance measurements of each electrode , 1985 .

[15]  V. Subramanian,et al.  An ink-jet-deposited passive component process for RFID , 2004, IEEE Transactions on Electron Devices.

[16]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[17]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[18]  T. Matsue,et al.  Sol–gel fabrication of lithium-ion microarray battery , 2007 .

[19]  Daniel A. Steingart,et al.  Jonny Galvo: A Small, Low Cost Wireless Galvanostat , 2006 .

[20]  T. P. Dirkse,et al.  The reaction of silver oxides with potassium hydroxide , 1963 .

[21]  Mohamad Kamal Harun,et al.  Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte , 2005 .

[22]  H. Takenouti,et al.  Impedance of a porous electrode with an axial gradient of concentration , 1984 .

[23]  James Demmel,et al.  Wireless sensor networks for structural health monitoring , 2006, SenSys '06.

[24]  Y. Ein‐Eli Enhanced Corrosion Inhibition of Zn in Alkaline Solutions Containing Poly(ethylene glycol) Diacid , 2004 .

[25]  Venkat R. Subramanian,et al.  Analytical solution for the impedance of porous electrodes , 2002 .

[26]  Vivek Subramanian,et al.  Organic TFTs as gas sensors for electronic nose applications , 2005 .

[27]  James W. Evans,et al.  Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte , 2010 .

[28]  J. Ramos-Barrado,et al.  Diffusion with general boundary conditions in electrochemical systems , 2000 .

[29]  Chun–Chen Yang Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte , 2002 .

[30]  J. Harb,et al.  Microscopic Nickel-Zinc Batteries for Use in Autonomous Microsystems , 2001 .