Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase

Colipase (Mr 10 kDa) confers catalytic activity to pancreatic lipase under physiological conditions (high bile salt concentrations). Previously determined 3‐Å‐resolution X‐ray structures of lipase‐colipase complexes have shown that, in the absence of substrate, colipase binds to the noncatalytic C‐terminal domain of pancreatic lipase (van Tilbeurgh H, Sarda L, Verger R, Cambillau C, 1992, Nature 559:159–162; van Tilbeurgh et al., 1993a, Nature 362:814–820). Upon lipid binding, conformational changes at the active site of pancreatic lipase bring a surface loop (the lid) in contact with colipase, creating a second binding site for this cofactor. Covalent inhibition of the pancreatic lipase by a phosphonate inhibitor yields better diffracting crystals of the lipase‐colipase complex. From the 2.4‐Å‐resolution structure of this complex, we give an accurate description of the colipase. It confirms the previous proposed disulfide connections (van Tilbeurgh H, Sarda L, Verger R, Cambillau C, 1992, Nature 359:159–162; van Tilbeurgh et al., 1993a, Nature 362:814–820) that were in disagreement with the biochemical assignment (Chaillan C, Kerfelec B, Foglizzo E, Chapus C, 1992, Biochem Biophys Res Commun 184:206–211). Colipase lacks well‐defined secondary structure elements. This small protein seems to be stabilized mainly by an extended network of five disulfide bridges that runs throughout the flatly shaped molecule, reticulating its four finger‐like loops. The colipase surface can be divided into a rather hydrophilic part, interacting with lipase, and a more hydrophobic part, formed by the tips of the fingers. The interaction between colipase and the C‐terminal domain of lipase is stabilized by eight hydrogen bonds and about 80 van der Waals contacts. Upon opening of the lid, three more hydrogen bonds and about 28 van der Waals contacts are added, explaining the higher apparent affinity in the presence of a lipid/water interface. The tips of the fingers are very mobile and constitute the lipid interaction surface. Two detergent molecules that interact with colipase were observed in the crystal, covering part of the hydrophobic surface.

[1]  R. Kaptein,et al.  360-MHz nuclear magnetic resonance and laser photochemically induced dynamic nuclear polarization studies of bile salt interaction with porcine colipase A. , 2005, European journal of biochemistry.

[2]  H. van Tilbeurgh,et al.  The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. , 1994, Biochemistry.

[3]  A. Gronenborn,et al.  High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site. , 1994, Structure.

[4]  M. James,et al.  The molecular structure of the complex of Ascaris chymotrypsin/elastase inhibitor with porcine elastase. , 1994, Structure.

[5]  C Cambillau,et al.  Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution. , 1994, Journal of molecular biology.

[6]  G. Scheele,et al.  Structure of the canine pancreatic colipase gene includes two protein-binding sites in the promoter region. , 1993, The Journal of biological chemistry.

[7]  H. Tilbeurgh,et al.  Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography , 1993, Nature.

[8]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[9]  H. van Tilbeurgh,et al.  Crystallization of pancreatic procolipase and of its complex with pancreatic lipase. , 1993, Journal of molecular biology.

[10]  H. Tilbeurgh,et al.  Structure of the pancreatic lipase–procolipase complex , 1992, Nature.

[11]  B. Kerfelec,et al.  Direct involvement of the C-terminal extremity of pancreatic lipase (403-449) in colipase binding. , 1992, Biochemical and biophysical research communications.

[12]  C. Erlanson‐Albertsson Pancreatic colipase. Structural and physiological aspects. , 1992, Biochimica et biophysica acta.

[13]  R. Huber,et al.  Refined structure of the hirudin-thrombin complex. , 1991, Journal of molecular biology.

[14]  V. Saudek,et al.  Three-dimensional structure of echistatin, the smallest active RGD protein. , 1991, Biochemistry.

[15]  G. Wagner,et al.  Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. , 1991, Science.

[16]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[17]  G. Bray,et al.  Enterostatin (Val-Pro-Asp-Pro-Arg), the activation peptide of procolipase, selectively reduces fat intake , 1991, Physiology & Behavior.

[18]  G. Bray,et al.  Pancreatic procolipase propeptide, enterostatin, specifically inhibits fat intake , 1991, Physiology & Behavior.

[19]  J. Dagorn,et al.  cDNA Sequence and Deduced Amino Acid Sequence of Human Preprocolipase , 1991, Pancreas.

[20]  Martin Karplus,et al.  Molecular dynamics simulations with experimental restraints , 1991 .

[21]  Y. Kitagawa,et al.  Full length cDNA sequence encoding canine pancreatic colipase. , 1990, Nucleic acids research.

[22]  C. Chothia,et al.  The structure of protein-protein recognition sites. , 1990, The Journal of biological chemistry.

[23]  F. Schroeder,et al.  Synthesis and characterization of the dansyltyrosine derivatives of porcine pancreatic colipase. , 1990, Biochemistry.

[24]  C. Erlanson‐Albertsson,et al.  A possible physiological function of pancreatic pro-colipase activation peptide in appetite regulation. , 1988, Biochimie.

[25]  W. Behnke,et al.  The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins. , 1987, The Biochemical journal.

[26]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[27]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[28]  C. Erlanson‐Albertsson,et al.  Measurement of the binding of human colipase to human lipase and lipase substrates. , 1982, Biochimica et biophysica acta.

[29]  R. Kaptein,et al.  Limited trypsinolysis of porcine and equine colipases. Spectroscopic and kinetic studies. , 1981, Biochimica et biophysica acta.

[30]  C. Erlanson‐Albertsson The existence of pro-colipase in pancreatic juice. , 1981, Biochimica et biophysica acta.

[31]  C. Erlanson‐Albertsson,et al.  Importance of the N-terminal sequence in porcine pancreatic colipase. , 1981, Biochimica et biophysica acta.

[32]  L. Sarda,et al.  Horse pancreatic lipase. Interaction with colipase from various species. , 1981, Biochimie.

[33]  T. Wieloch,et al.  Evidence for a pancreatic pro‐colipase and its activation by trypsin , 1979, FEBS letters.

[34]  C. Figarella,et al.  Human pancreatic lipase: a glycoprotein. , 1977, Biochimica et biophysica acta.

[35]  L. Sarda,et al.  Inhibition of sheep pancreatic lipase activity against emulsified tributyrin by non-ionic detergents. , 1976, Biochimie.

[36]  P. Desnuelle,et al.  The primary structure of porcine colipase II. II. The disulfide bridges. , 1974, Biochimica et biophysica acta.

[37]  Marie-Pierre Egloff Etudes cristallographiques du systeme lipase pancreatique humaine-colipase et d'une proteine de transport d'acides gras , 1995 .

[38]  Nathalie Rugani Structure et fonction de la colipase pancréatique : isolement de la colipase de porc (formes précurseur et activée) en vue de l'étude de sa structure tridimensionnelle par cristallographie , 1993 .

[39]  R. Duan [Pancreatic colipase]. , 1992, Sheng li ke xue jin zhan [Progress in physiology].

[40]  P. Desnuelle,et al.  Molecular and cellular basis of digestion , 1986 .

[41]  B. Borgström,et al.  Comparative studies on the ability of pancreatic colipases to restore activity of lipases from different species , 1981 .