Biosignal Processing and Computational Methods to Enhance Sensory Motor Neuroprosthetics

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Editorial: Biosignal processing and computational methods to enhance sensory motor neuroprosthetics Mitsuhiro Hayashibe, David Guiraud, Jose L. Pons, Dario Farina

[1]  M. Ortiz-Catalán,et al.  Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient , 2014, Front. Neurosci..

[2]  Clement Hamani,et al.  Temporal alignment of electrocorticographic recordings for upper limb movement , 2015, Front. Neurosci..

[3]  Tadashi Isa,et al.  Brain-machine interface to control a prosthetic arm with monkey ECoGs during periodic movements , 2014, Front. Neurosci..

[4]  Alireza Gharabaghi,et al.  Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation , 2015, Front. Neurosci..

[5]  Hoon-Ki Min,et al.  A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies , 2014, Front. Neurosci..

[6]  M. Hayashibe,et al.  Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation , 2011, Journal of neural engineering.

[7]  Eduardo Rocon,et al.  Automatic real-time monitoring and assessment of tremor parameters in the upper limb from orientation data , 2014, Front. Neurosci..

[8]  Febo Cincotti,et al.  Towards Noninvasive Hybrid Brain–Computer Interfaces: Framework, Practice, Clinical Application, and Beyond , 2015, Proceedings of the IEEE.

[9]  Ángel Gil-Agudo,et al.  Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton , 2014, Journal of NeuroEngineering and Rehabilitation.

[10]  J. Millán,et al.  Single trial prediction of self-paced reaching directions from EEG signals , 2014, Front. Neurosci..

[11]  Uttama Lahiri,et al.  Post-stroke balance rehabilitation under multi-level electrotherapy: a conceptual review , 2014, Front. Neurosci..

[12]  Timothy G. Constandinou,et al.  Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study , 2014, Front. Neurosci..

[13]  Fumio Miyazaki,et al.  Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation , 2014, Front. Neurosci..

[14]  Konrad P. Körding,et al.  Multimodal decoding and congruent sensory information enhance reaching performance in subjects with cervical spinal cord injury , 2014, Front. Neurosci..

[15]  James J. Abbas,et al.  A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve , 2014, Front. Neurosci..

[16]  José del R. Millán,et al.  Towards Independence: A BCI Telepresence Robot for People With Severe Motor Disabilities , 2015, Proceedings of the IEEE.

[17]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[18]  Jonathon W. Sensinger,et al.  Does EMG control lead to distinct motor adaptation? , 2014, Front. Neurosci..

[19]  Justin C. Sanchez,et al.  A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces , 2014, Front. Neurosci..

[20]  Kyuwan Choi,et al.  Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography , 2013, Front. Neurosci..

[21]  Vincent Berenz,et al.  Sensory synergy as environmental input integration , 2015, Front. Neurosci..

[22]  J. Millán,et al.  Personalized Neuroprosthetics , 2013, Science Translational Medicine.

[23]  Jose L. Contreras-Vidal,et al.  Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution , 2014, Front. Neurosci..

[24]  B. Michael Berry,et al.  Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis , 2014, Front. Neurosci..

[25]  Dario Farina,et al.  The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges , 2014, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[26]  Zhan Li,et al.  Muscle Fatigue Tracking with Evoked EMG via Recurrent Neural Network: Toward Personalized Neuroprosthetics , 2014, IEEE Computational Intelligence Magazine.

[27]  Alexander Duschau-Wicke,et al.  Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation , 2014, Front. Neurosci..