Point regular groups of automorphisms of generalised quadrangles

We study the point regular groups of automorphisms of some of the known generalised quadrangles. In particular we determine all point regular groups of automorphisms of the thick classical generalised quadrangles. We also construct point regular groups of automorphisms of the generalised quadrangle of order (q-1,q+1) obtained by Payne derivation from the classical symplectic quadrangle W(3,q). For q=p^f with f>=2 we obtain at least two nonisomorphic groups when p>=5 and at least three nonisomorphic groups when p=2 or 3. Our groups include nonabelian 2-groups, groups of exponent 9 and nonspecial p-groups. We also enumerate all point regular groups of automorphisms of some small generalised quadrangles.

[1]  D. Ghinelli Regular groups on generalized quadrangles and nonabelian difference sets with multiplier -1 , 1992 .

[2]  K. Thas,et al.  Generalized quadrangles admitting a sharply transitive Heisenberg group , 2008, Des. Codes Cryptogr..

[3]  David E. Flesner,et al.  Maximal subgroups of PSp4(2,) containing central ela-tions or noncentered skew elations , 1975 .

[4]  Benjamin Mwene,et al.  On the subgroups of the group PSL4(2m) , 1976 .

[5]  H. H. Mitchell The subgroups of the quaternary abelian linear group , 1914 .

[6]  William M. Kantor,et al.  The rank 3 permutation representations of the finite classical groups , 1982 .

[7]  Gordon F. Royle,et al.  A NORMAL NON-CAYLEY-INVARIANT GRAPH FOR THE ELEMENTARY ABELIAN GROUP OF ORDER 64 , 2008, Journal of the Australian Mathematical Society.

[8]  B. Baumeister Primitive permutation groups with a regular subgroup , 2007 .

[9]  Cheryl E. Praeger,et al.  Regular Subgroups of Primitive Permutation Groups , 2010 .

[10]  William M. Kantor,et al.  Generalized polygons, SCABs and GABs , 1986 .

[11]  Koen Thas,et al.  Generalized Quadrangles with an Abelian Singer Group , 2006, Des. Codes Cryptogr..

[12]  A. Wagner The subgroups of PSL(5, 2a) , 1978 .

[13]  B. Baumeister Primitive Permutation Groups of Unitary type with a regular Subgroup , 2006 .

[14]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[15]  Satoshi Yoshiara A generalized quadrangle with an automorphism group acting regularly on the points , 2007, Eur. J. Comb..

[16]  L. D. Martino,et al.  The irreducible subgroups of PSL(V5, q), where q is odd , 1979 .

[17]  Stanley E. Payne,et al.  Nonisomorphic generalized quadrangles , 1971 .

[18]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..