CHARMM-GUI PACE CG Builder for Solution, Micelle, and Bilayer Coarse-Grained Simulations

Coarse-grained (CG) and multiscale simulations are widely used to study large biological systems. However, preparing the simulation system is time-consuming when the system has multiple components, because each component must be arranged carefully as in protein/micelle or protein/bilayer systems. We have developed CHARMM-GUI PACE CG Builder for building solution, micelle, and bilayer systems using the PACE force field, a united-atom (UA) model for proteins, and the Martini CG force field for water, ions, and lipids. The robustness of PACE CG Builder is validated by simulations of various systems in solution (α3D, fibronectin, and lysozyme), micelles (Pf1, DAP12-NKG2C, OmpA, and DHPC-only micelle), and bilayers (GpA, OmpA, VDAC, MscL, OmpF, and lipid-only bilayers for six lipids). The micelle’s radius of gyration, the bilayer thickness, and the per-lipid area in bilayers are comparable to the values from previous all-atom and CG simulations. Most tested proteins have root-mean squared deviations of less than 3 Å. We expect PACE CG Builder to be a useful tool for modeling/refining large, complex biological systems at the mixed UA/CG level.

[1]  S. Dodd,et al.  Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. , 2000, Biophysical journal.

[2]  Benjamin A. Hall,et al.  Mechanism of Bacterial Signal Transduction Revealed by Molecular Dynamics of Tsr Dimers and Trimers of Dimers in Lipid Vesicles , 2012, PLoS Comput. Biol..

[3]  Klaus Schulten,et al.  Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains. , 2012, Journal of chemical theory and computation.

[4]  B. Matthews,et al.  Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. , 1987, Journal of molecular biology.

[5]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[6]  Jejoong Yoo,et al.  A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores. , 2013, Biophysical journal.

[7]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[8]  S. Opella,et al.  Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. , 2010, Biophysical journal.

[9]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[10]  Bernard R. Brooks,et al.  CHARMMing: A New, Flexible Web Portal for CHARMM , 2008, J. Chem. Inf. Model..

[11]  L. Lai,et al.  Folding simulations of a de novo designed protein with a betaalphabeta fold. , 2010, Biophysical journal.

[12]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[13]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[14]  Alexandre M J J Bonvin,et al.  A Flexible, Grid-Enabled Web Portal for GROMACS Molecular Dynamics Simulations. , 2012, Journal of chemical theory and computation.

[15]  Lee Makowski,et al.  Multidomain assembled states of Hck tyrosine kinase in solution , 2010, Proceedings of the National Academy of Sciences.

[16]  Douglas C. Rees,et al.  Structures of the Prokaryotic Mechanosensitive Channels MscL and MscS , 2007 .

[17]  B. Matthews,et al.  A mutant T4 lysozyme displays five different crystal conformations , 1990, Nature.

[18]  P. T. F. Williamson,et al.  Probing the oligomeric state and interaction surfaces of Fukutin-I in dilauroylphosphatidylcholine bilayers , 2011, European Biophysics Journal.

[19]  V. Parsegian,et al.  Hydration forces between phospholipid bilayers , 1989 .

[20]  A. Gorfe,et al.  Organization, dynamics, and segregation of Ras nanoclusters in membrane domains , 2012, Proceedings of the National Academy of Sciences.

[21]  J. Chou,et al.  The structural basis for intramembrane assembly of an activating immunoreceptor complex , 2010, Nature Immunology.

[22]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[23]  Hue Sun Chan,et al.  Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins , 2010, Proceedings of the National Academy of Sciences.

[24]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[25]  Klaus Schulten,et al.  Stability and dynamics of virus capsids described by coarse-grained modeling. , 2006, Structure.

[26]  Yun-Dong Wu,et al.  PACE Force Field for Protein Simulations. 2. Folding Simulations of Peptides. , 2010, Journal of chemical theory and computation.

[27]  Ivan Grubisic,et al.  Biased coarse-grained molecular dynamics simulation approach for flexible fitting of X-ray structure into cryo electron microscopy maps. , 2010, Journal of structural biology.

[28]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[29]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[30]  Sunhwan Jo,et al.  CHARMM-GUI Micelle Builder for Pure/Mixed Micelle and Protein/Micelle Complex Systems , 2013, J. Chem. Inf. Model..

[31]  Arun Yethiraj,et al.  Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations. , 2013, The journal of physical chemistry. B.

[32]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[33]  Lukas K. Tamm,et al.  Structure of outer membrane protein A transmembrane domain by NMR spectroscopy , 2001, Nature Structural Biology.

[34]  Wonpil Im,et al.  Molecular dynamics studies of ion permeation in VDAC. , 2011, Biophysical journal.

[35]  Gregory A Voth,et al.  Multiscale computer simulation of the immature HIV-1 virion. , 2010, Biophysical journal.

[36]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[37]  Vijay S Reddy,et al.  Invariant polymorphism in virus capsid assembly. , 2009, Journal of the American Chemical Society.

[38]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[39]  B. Konig,et al.  Hydration and structural properties of mixed lipid/surfactant model membranes , 1997 .

[40]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[41]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[42]  Siewert J Marrink,et al.  Lipids on the move: simulations of membrane pores, domains, stalks and curves. , 2009, Biochimica et biophysica acta.

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  W. DeGrado,et al.  Solution structure and dynamics of a de novo designed three-helix bundle protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[46]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[47]  K. J. Oh,et al.  Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. , 1997, Biochemistry.

[48]  Sebastian Hiller,et al.  References and Notes Supporting Online Material Materials and Methods Figures S1 to S5 Table S1 References Solution Structure of the Integral Human Membrane Protein Vdac-1 in Detergent Micelles , 2022 .

[49]  Yun-Dong Wu,et al.  PACE Force Field for Protein Simulations. 1. Full Parameterization of Version 1 and Verification. , 2010, Journal of chemical theory and computation.

[50]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[51]  Wonpil Im,et al.  NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes. , 2012, Biophysical journal.

[52]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[53]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.