The genetic link between iron oxide-apatite and iron skarn mineralization in the Beizhan deposit, Western Tianshan, NW China: Evidence from magnetite and gangue mineral geochemistry

[1]  Zhaochong Zhang,et al.  Superimposed zinc and gold mineralization in the Dunde iron deposit, western Tianshan, NW China: Constraints from LA-ICP-MS fluid inclusion microanalysis , 2022, Ore Geology Reviews.

[2]  Li–Xing Li,et al.  Geological settings and metallogenesis of high-grade iron deposits in China , 2021, Science China Earth Sciences.

[3]  A. Simon,et al.  A Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetite , 2020, Economic Geology.

[4]  M. Reich,et al.  The Geochemistry of Magnetite and Apatite from the El Laco Iron Oxide-Apatite Deposit, Chile: Implications for Ore Genesis , 2020 .

[5]  Li Changhao,et al.  Carboniferous ore-controlling volcanic apparatus and metallogenic models for the large-scale iron deposits in the Western Tianshan, Xinjiang , 2020, Acta Petrologica Sinica.

[6]  J. Gross,et al.  Apatite trace element geochemistry and cathodoluminescent textures—A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, southeastern Missouri iron metallogenic province, USA , 2020 .

[7]  R. Zhou,et al.  LA-MC-ICP-MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia , 2020, GSA Bulletin.

[8]  D. Lentz,et al.  A genetic link between iron oxide-apatite and iron skarn mineralization in the Jinniu volcanic basin, Daye district, eastern China: Evidence from magnetite geochemistry and multi-mineral U-Pb geochronology , 2020, GSA Bulletin.

[9]  M. Reich,et al.  The geochemistry of apatite from the Los Colorados iron oxide–apatite deposit, Chile: implications for ore genesis , 2019, Mineralium Deposita.

[10]  M. Reich,et al.  Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization , 2019, Geochimica et Cosmochimica Acta.

[11]  J. Mao,et al.  In situ LA-ICP-MS U–Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China , 2018, Mineralium Deposita.

[12]  Zuoheng Zhang,et al.  Geochemistry of the Zhibo submarine intermediate‐mafic volcanic rocks and associated iron ores, Western Tianshan, Northwest China: Implications for ore genesis , 2018, Geological Journal.

[13]  Ting Liang,et al.  Mineralogy and stable isotope constraints on the genesis of submarine volcanic‐hosted Beizhan iron deposit in the Western Tianshan, NW China , 2018 .

[14]  Zuoheng Zhang,et al.  Application of in situ titanite U–Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China , 2018 .

[15]  M. Reich,et al.  A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile , 2018, Mineralium Deposita.

[16]  Zuoheng Zhang,et al.  Pyrite Re–Os and muscovite 40Ar/39Ar dating of the Beizhan iron deposit in the Chinese Tianshan Orogen and its geological significance , 2018 .

[17]  Wei-dong Sun,et al.  Ore-fluid geochemistry and metallogeny of the Dunde iron–zinc deposit in western Tianshan, Xinjiang, China: Evidence from fluid inclusions, REE and C–O–Sr isotopes of calcite , 2016, Ore Geology Reviews.

[18]  C. McFarlane,et al.  Textures, trace element compositions, and U–Pb ages of titanite from the Mangling granitoid pluton, East Qinling Orogen: Implications for magma mixing and destruction of the North China Craton , 2017 .

[19]  R. Klemd,et al.  In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China , 2017 .

[20]  D. Harlov,et al.  Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA , 2016 .

[21]  J. Webster,et al.  Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China: Implications for the behavior of halogens in mineralized porphyry systems , 2016 .

[22]  N. Cook,et al.  Apatite at Olympic Dam, South Australia: A petrogenetic tool , 2016 .

[23]  D. Harlov,et al.  Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden , 2016 .

[24]  L. A. Coogan,et al.  Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration , 2016 .

[25]  F. Velasco,et al.  Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile , 2016 .

[26]  M. Reich,et al.  Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits , 2016 .

[27]  M. Reich,et al.  Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes , 2015 .

[28]  K. Haase,et al.  Metallogenesis of the Zhibo and Chagangnuoer volcanic iron oxide deposits in the Awulale Iron Metallogenic Belt, Western Tianshan orogen, China , 2015 .

[29]  M. Reich,et al.  Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions , 2015 .

[30]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[31]  Q. Shan,et al.  Age, petrogenesis and tectonic significance of the ferrobasalts in the Chagangnuoer iron deposit, western Tianshan , 2015 .

[32]  Jiyong Li,et al.  Petrogenesis of the Chagangnuoer deposit, NW China: a general model for submarine volcanic-hosted skarn iron deposits , 2015 .

[33]  Han Qion Zircon U-Pb Geochronology and Hf Isotopes of Volcanic Rocks in Beizhan Iron Ore of the West Tianshan , 2015 .

[34]  G. Beaudoin,et al.  Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS , 2015, Mineralium Deposita.

[35]  D. French,et al.  The chemistry of hydrothermal magnetite: A review , 2014 .

[36]  G. Beaudoin,et al.  Trace elements in magnetite as petrogenetic indicators , 2014, Mineralium Deposita.

[37]  Zuoheng Zhang,et al.  Geology, geochemistry, and geochronology of the Zhibo iron deposit in the Western Tianshan, NW China: Constraints on metallogenesis and tectonic setting , 2014 .

[38]  Feng Liu,et al.  The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt: A Kiruna-type iron deposit , 2014 .

[39]  P. Davidson,et al.  The Southeast Missouri (USA) Proterozoic iron metallogenic province—Types of deposits and genetic relationships to magnetite–apatite and iron oxide–copper–gold deposits , 2014 .

[40]  Zuoheng Zhang,et al.  Geological characteristics and metallogenesis of iron deposits in western Tianshan, China , 2014 .

[41]  Zuoheng Zhang,et al.  Geology, geochemistry, and geochronology of the Dunde iron–zinc ore deposit in western Tianshan, China , 2014 .

[42]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[43]  I. Fletcher,et al.  Dating deposition and low-grade metamorphism by in situ UPb geochronology of titanite in the Paleoproterozoic Timeball Hill Formation, southern Africa , 2013 .

[44]  V. Troll,et al.  Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden , 2013, Scientific Reports.

[45]  Suyun Hu Study on the Metallogenic Epoch and Mineral Genesis of Beizhan Iron Ore in Western Tianshan , 2013 .

[46]  Xi Zhang,et al.  Geochronology and geochemistry of granitoid rocks from the Zhibo syngenetic volcanogenic iron ore deposit in the Western Tianshan Mountains (NW-China): Constraints on the age of mineralization and tectonic setting , 2012 .

[47]  Yong‐Fei Zheng,et al.  Geochemical and U–Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen , 2012 .

[48]  Z. Tao The formation epoch of the host wall rock of the Beizhan iron deposit in West Tianshan Mountains of Xinjiang and its geological significance , 2012 .

[49]  Z. Zuo,et al.  Geological features,mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tianshan Mountains of Xinjiang , 2012 .

[50]  F. Pirajno,et al.  A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China , 2011 .

[51]  G. Beaudoin,et al.  Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types , 2011 .

[52]  Lei Xie,et al.  Mineralogical evidence for magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of three types of titanite , 2010 .

[53]  Deng Wen-feng Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen,NW China:Constraints from the SHRIMP zircon age determination and its tectonic significance , 2010 .

[54]  R. Sillitoe Porphyry Copper Systems , 2010 .

[55]  Martin P Smith,et al.  In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: new constraints on the timing and origin of mineralization , 2009 .

[56]  Yongfeng Zhu,et al.  Petrology, Sr–Nd–Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China , 2009, Journal of the Geological Society.

[57]  R. Large,et al.  Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits , 2009 .

[58]  Dunyi Liu,et al.  Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U–Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China , 2009 .

[59]  J. Charvet,et al.  Paleozoic tectonic evolution of the Yili Block, western Chinese Tianshan , 2008 .

[60]  C. R. Souza Filho,et al.  Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints , 2008 .

[61]  D. Jenkins,et al.  Experimental Investigation of the Upper Thermal Stability of Mg-rich Actinolite; Implications for Kiruna-Type Iron Deposits , 2008 .

[62]  S. Klemme,et al.  Trace element partitioning between apatite and silicate melts , 2006 .

[63]  Zhai Wei SHRIMP dating of zircons from volcanic host rocks of Dahalajunshan Formation in Axi gold deposit,Xinjiang,China,and its geological impfications. , 2006 .

[64]  Lianchang Zhang,et al.  Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia , 2004 .

[65]  F. Henríquez,et al.  NEW FIELD EVIDENCE BEARING ON THE ORIGIN OF THE EL LACO MAGNETITE DEPOSIT, NORTHERN CHILE—A DISCUSSION , 2003 .

[66]  U. Andersson,et al.  Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden , 2002 .

[67]  R. Wintsch,et al.  U–Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study , 2002 .

[68]  W. Griffin,et al.  Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type , 2002 .

[69]  A. Barth,et al.  Magmatic anhydrite in granitic rocks: First occurrence and potential petrologic consequences , 2000 .

[70]  Xiao Xuchang,et al.  Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China , 1998 .

[71]  R. Allen,et al.  Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden , 1996 .

[72]  R. Frietsch,et al.  Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types , 1995 .

[73]  J. Nystroem,et al.  Magmatic Features of Iron Ores of the Kiruna Type in Chile and Sweden: Ore Textures and Magnetite Geochemistry , 1994 .

[74]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[75]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[76]  W. Maclean,et al.  Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec , 1987 .

[77]  B. Leake,et al.  Nomenclature of Amphiboles , 1978, Mineralogical Magazine.

[78]  M. Hey A new review of the chlorites , 1954 .