The strength limit in a bio-inspired metallic nanocomposite

[1]  K. Lu,et al.  Hardness and strain rate sensitivity of nanocrystalline Cu , 2006 .

[2]  Baohua Ji,et al.  Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures , 2006, Modelling and Simulation in Materials Science and Engineering.

[3]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[4]  N. Hansen Boundary strengthening in undeformed and deformed polycrystals , 2005 .

[5]  H. Höppel,et al.  Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation , 2005 .

[6]  Huajian Gao,et al.  A quantitative study of the hardness of a superhard nanocrystalline titanium nitride/silicon nitride coating , 2005 .

[7]  Huajian Gao,et al.  Flow stress of biomorphous metal–matrix composites , 2004 .

[8]  J. Schiøtz Atomic-scale modeling of plastic deformation of nanocrystalline copper , 2004 .

[9]  H. Höppel,et al.  Enhanced Strength and Ductility in Ultrafine‐Grained Aluminium Produced by Accumulative Roll Bonding , 2004 .

[10]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[11]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[12]  A. Mukherjee,et al.  Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials , 2003 .

[13]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[14]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[16]  J. C. Hamilton,et al.  Surface step effects on nanoindentation. , 2001, Physical review letters.

[17]  S. Agnew,et al.  Microstructure and mechanical behavior of nanocrystalline metals , 2000 .

[18]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[19]  S. Vepřek The search for novel, superhard materials , 1999 .

[20]  M. Mayo,et al.  Structure and Mechanical Behavior of Bulk Nanocrystalline Materials , 1999 .

[21]  E. Arzt Size effects in materials due to microstructural and dimensional constraints: a comparative review , 1998 .

[22]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[23]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[24]  E. Arzt,et al.  Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders , 1997 .

[25]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[26]  Peter Gumbsch,et al.  An empirical interatomic potential for B2 NiAl , 1995 .

[27]  W. Landis The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. , 1995, Bone.

[28]  Clarke,et al.  Structural changes accompanying densification of random hard-sphere packings. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Subra Suresh,et al.  An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites , 1991 .

[30]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[32]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[33]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.

[35]  W. Nix,et al.  Modeling Plasticity at the Micrometer Scale , 1999, Naturwissenschaften.

[36]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .