Bad Lattice Points

We introduce and discuss the term “bad lattice points” which can be seen as a counterpart to the method of good lattice points for Monte Carlo and quasi-Monte Carlo integration. We show several examples of the occurrence of bad lattice points in the latter fields and perform a computer search for such point sets.

[1]  Harald Niederreiter,et al.  The weighted spectral test: diaphony , 1998, TOMC.

[2]  Brian D. Ripley,et al.  Thoughts on pseudorandom number generators , 1990 .

[3]  U. Dieter,et al.  How to calculate shortest vectors in a lattice , 1975 .

[4]  A. De Matteis,et al.  Long-range correlation analysis of the Wichmann-Hill random number generator , 1993 .

[5]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[6]  P. A. W. Lewis,et al.  A Pseudo-Random Number Generator for the System/360 , 1969, IBM Syst. J..

[7]  S. Haber Parameters for integrating periodic functions of several variables , 1983 .

[8]  森戸 晋,et al.  New directions in simulation for manufacturing and communications , 1994 .

[9]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[10]  A. De Matteis,et al.  Controlling Correlations in Parallel Monte Carlo , 1995, Parallel Comput..

[11]  Andreas Uhl,et al.  Efficient lattice assessment for LCG and GLP parameter searches , 2001, Math. Comput..

[12]  Pierre L'Ecuyer,et al.  Software for uniform random number generation: distinguishing the good and the bad , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[13]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[14]  P. Hellekalek Good random number generators are (not so) easy to find , 1998 .

[15]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[16]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[17]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[18]  P. L’Ecuyer,et al.  Quasi-Monte Carlo Node Sets from Linear Congruential Generators , 2000 .

[19]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[20]  Jürgen Eichenauer-Herrmann,et al.  Upper bounds for the Beyer ratios of linear congruential generators , 1990 .

[21]  Henry R. Neave,et al.  On Using the Box‐Müller Transformation with Multiplicative Congruential Pseudo‐Random Number Generators , 1973 .

[22]  S. Kunte,et al.  Statistical computing , 1999 .

[23]  A. De Matteis,et al.  Computation of critical distances within multiplicative congruential pseudorandom number sequences , 1992 .

[24]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[25]  George Marsaglia,et al.  A random number generator for PC's , 1990 .

[26]  P. L’Ecuyer,et al.  On the lattice structure of certain linear congruential sequences related to AWC/SWB generators , 1994 .

[27]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[28]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[29]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[30]  R. Deal Simulation Modeling and Analysis (2nd Ed.) , 1994 .

[31]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[32]  I. Sloan,et al.  Lattice methods for multiple integration: theory, error analysis and examples , 1987 .

[33]  Birger Jansson,et al.  Random Number Generators , 1967 .

[34]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[35]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[36]  B. J. T. Morgan The elements of simulation , 1984 .

[37]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[38]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[39]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[40]  B. Morgan Elements of Simulation , 1984 .

[41]  Chiang Kao,et al.  Random number generators with long period and sound statistical properties , 1998 .

[42]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[43]  John M. Chambers Random Number Generators , 1967 .

[44]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[45]  J. Honerkamp,et al.  Stochastische dynamische Systeme : Konzepte, numerische Methoden, Datenanalysen , 1990 .

[46]  Karl Entacher,et al.  Parallel streams of linear random numbers in the spectral test , 1999, TOMC.

[47]  Shu Tezuka,et al.  On the lattice structure of the add-with-carry and subtract-with-borrow random number generators , 1993, TOMC.

[48]  G. Marsaglia The Structure of Linear Congruential Sequences , 1972 .

[49]  Sheldon M. Ross,et al.  A Course in Simulation , 1990 .

[50]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[51]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[52]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[53]  Ray Jain,et al.  The art of computer systems performance analysis - techniques for experimental design, measurement, simulation, and modeling , 1991, Wiley professional computing.

[54]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[55]  A. Matteis,et al.  Parallelization of random number generators and long-range correlations , 1988 .

[56]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[57]  手塚 集 Uniform random numbers : theory and practice , 1995 .

[58]  A. Rotenberg,et al.  A New Pseudo-Random Number Generator , 1960, JACM.

[59]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[60]  Pierre L'Ecuyer,et al.  Linear recurrences with carry as uniform random number generators , 1995, WSC '95.

[61]  Harald Niederreiter,et al.  Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .

[62]  Sally E. Howe The Documentation of Statistical Software in GAMS: The Guide to Available Mathematical Software , 1983 .

[63]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[64]  Jürgen Eichenauer-Herrmann,et al.  A remark on long-range correlations in multiplicative congruential pseudo random number generators , 1989 .

[65]  Andreas Uhl,et al.  Parallel Random Number Generation: Long-Range Correlations Among Multiple Processors , 1999, ACPC.

[66]  David W. Hutchinson A new uniform pseudorandom number generator , 1966, CACM.

[67]  Pierre L'Ecuyer,et al.  Testing random number generators , 1992, WSC '92.

[68]  Brian David Ripley,et al.  The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  P. L’Ecuyer,et al.  On selection criteria for lattice rules and other quasi-Monte Carlo point sets , 2001 .