Kneser-type oscillation criteria for second-order half-linear delay differential equations

Abstract In the paper, we establish a variant of Kneser oscillation theorem for the second-order half-linear delay differential equation ( r ( t ) | y ′ ( t ) | α − 1 y ′ ( t ) ) ′ + q ( t ) | y ( τ ( t ) ) | α − 1 y ( τ ( t ) ) = 0 , t ≥ t 0 > 0 , under the assumption ∫ t 0 ∞ r − 1 / α ( s ) d s = ∞ , which improves a plenty of results reported in the literature. In case of α ≥ 1, the obtained criterion is sharp in the sense that the oscillation constant is optimal for the corresponding half-linear Euler type equation with delay, while the result for α

[1]  A. Kneser,et al.  Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen , 1893 .

[2]  T. Kusano,et al.  Oscillation properties of half-linear functional-differential equations of the second order , 1995 .

[3]  G. Ladas,et al.  Oscillation Theory of Delay Differential Equations: With Applications , 1992 .

[4]  Ravi P. Agarwal,et al.  Oscillation Theory for Second Order Dynamic Equations , 2002 .

[5]  Wan-Tong Li,et al.  Nonoscillation and Oscillation Theory for Functional Differential Equations , 2004 .

[6]  Ondřej Došlý,et al.  Half-linear differential equations , 2005 .

[7]  Jozef Dzurina,et al.  Oscillation criteria for second-order delay differential equations , 2003, Appl. Math. Comput..

[8]  A. Tiryaki Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments , 2009 .

[9]  Ravi P. Agarwal,et al.  Oscillation criteria for second-order retarded differential equations , 1997 .

[10]  Yuan Gong Sun,et al.  Note on the paper of Džurina and Stavroulakis , 2006, Appl. Math. Comput..

[11]  Zhenlai Han,et al.  Oscillation criteria for a class of second-order Emden–Fowler delay dynamic equations on time scales☆ , 2007 .

[12]  Fanwei Meng,et al.  Some new oscillation criteria for second order quasi-linear neutral delay differential equations , 2006, Appl. Math. Comput..

[13]  Simona Fišnarová,et al.  Oscillation of Half-Linear Differential Equations with Delay , 2013 .

[14]  Ravi P. Agarwal,et al.  Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations , 2002 .

[15]  Lynn Erbe,et al.  OSCILLATION OF SOLUTION TO SECOND-ORDER HALF-LINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES , 2016 .

[16]  W. Mahfoud,et al.  Comparison theorems for delay differential equations. , 1979 .

[17]  G. Chatzarakis,et al.  Improved oscillation results for second-order half-linear delay differential equations , 2017 .

[18]  R. Marík,et al.  Modified Riccati technique for half-linear differential equations with delay , 2014 .

[19]  Zhenlai Han,et al.  Oscillation of second-order delay dynamic equations on time scales , 2009 .

[20]  R. Marík,et al.  Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations , 2014 .

[21]  Samir H. Saker,et al.  Oscillation Criteria for Half-Linear Delay Dynamic Equations on Time Scales , 2009 .

[22]  Ravi P. Agarwal,et al.  Oscillation Theory for Difference and Functional Differential Equations , 2000 .