High-pressure liquid densities of fatty acid methyl esters: Measurement and prediction with PC-SAFT equation of state

[1]  Kai Kang,et al.  High-pressure liquid densities and derived thermodynamic properties for methyl laurate and ethyl laurate , 2016 .

[2]  I. Mokbel,et al.  Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate , 2016 .

[3]  J. Prausnitz,et al.  Densities of Diethylene Glycol, Monobutyl Ether, Diethylene Glycol Dibutyl Ether, and Ethylene Glycol Monobutyl Ether from (283.15 to 363.15) K at Pressures up to 60 MPa , 2016 .

[4]  M. Artal,et al.  Experimental and modeled volumetric behavior of linear and branched ethers , 2016 .

[5]  F. Pessoa,et al.  Speeds of Sound and Densities of Ternary and Quaternary Mixtures of Tetralin, Decalin, n-Decane, and n-Hexadecane: Experiments and Thermodynamic Modeling with PC-SAFT Equation of State , 2016 .

[6]  Deepak Tapriyal,et al.  High-Temperature, High-Pressure Volumetric Properties of Propane, Squalane, and Their Mixtures: Measurement and PC-SAFT Modeling , 2015 .

[7]  Jiafei Zhao,et al.  (p, ρ, T) Behavior of CO2 + Tetradecane Systems: Experiments and Thermodynamic Modeling , 2015 .

[8]  Lourdes F. Vega,et al.  Accurate modeling of supercritical CO2 for sustainable processes: Water + CO2 and CO2 + fatty acid esters mixtures , 2015 .

[9]  J. Coutinho,et al.  Development of simple and transferable molecular models for biodiesel production with the soft-SAFT equation of state , 2014 .

[10]  B. Bhanage,et al.  Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study , 2014 .

[11]  Marion B. Ansorge-Schumacher,et al.  Immobilised lipases in the cosmetics industry. , 2013, Chemical Society reviews.

[12]  P. Adlercreutz,et al.  Immobilisation and application of lipases in organic media. , 2013, Chemical Society reviews.

[13]  M. Paredes,et al.  Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate under High Pressure , 2013 .

[14]  B. Bhanage,et al.  Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds , 2013 .

[15]  Wei-dong Yan,et al.  Approach to Improve Speed of Sound Calculation within PC-SAFT Framework , 2012 .

[16]  J. Ortega,et al.  Measurements and Correlations of the Isobaric Vapor–Liquid Equilibria of Binary Mixtures and Excess Properties for Mixtures Containing an Alkyl (Methyl, Ethyl) Butanoate with an Alkane (Heptane, Nonane) at 101.3 kPa , 2012 .

[17]  J. Daridon,et al.  Speed of Sound, Density, and Derivative Properties of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate , 2012 .

[18]  V. Dohnal,et al.  Thermal and Volumetric Properties of Four Aqueous Aroma Compounds at Infinite Dilution , 2012 .

[19]  M. N. Gupta,et al.  Lipase promiscuity and its biochemical applications , 2012 .

[20]  A. Mainar,et al.  Viscometric and volumetric properties of benzene + methyl acetate, or + methyl propanoate, or + methyl butanoate binary systems at 283.15, 298.15 and 313.15 K , 2011 .

[21]  F. Perdomo,et al.  Predicting thermophysical properties of biodiesel fuel blends using the SAFT-VR approach , 2011 .

[22]  João A. P. Coutinho,et al.  Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters , 2010 .

[23]  F. Perdomo,et al.  Molecular thermodynamics of biodiesel fuel compounds , 2010 .

[24]  Gerhard Knothe,et al.  Biodiesel and renewable diesel: A comparison , 2010 .

[25]  J. D. Hemptinne,et al.  Measurements of Liquid—Liquid Equilibria for a Methanol + Glycerol + Methyl Oleate System and Prediction Using Group Contribution Statistical Associating Fluid Theory , 2010 .

[26]  A. Mariano,et al.  Isobaric Vapor−Liquid Equilibria for the Binary Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl Heptanoate at 101.31 kPa† , 2009 .

[27]  Clare McCabe,et al.  Developing a predictive group-contribution-based SAFT-VR equation of state , 2009 .

[28]  J. D. Hemptinne,et al.  Predicting VLE of heavy esters and their mixtures using GC-SAFT , 2008 .

[29]  C. Carvalho,et al.  Biotransformation of terpenes. , 2006 .

[30]  Jean-Charles de Hemptinne,et al.  Application of group contribution SAFT equation of state (GC-SAFT) to model phase behaviour of light and heavy esters , 2005 .

[31]  H. Yamamura,et al.  Low Temperature Heat Capacity and Thermodynamic Functions of Ceria-Stabilized Zirconia Ce0.124Zr0.876O2 , 2003 .

[32]  J. Canosa,et al.  Isobaric vapor-liquid equilibria and excess properties for the binary systems of methyl esters + heptane , 2003 .

[33]  D. Constantinescu,et al.  Isothermal vapour–liquid equilibria and excess molar volumes in the binary ethanol + methyl propanoate or methyl butanoate systems , 2002 .

[34]  H. Oonk,et al.  Liquid-vapour equilibria of the methyl esters of alkanoic acids: vapour pressures as a function of temperature and standard thermodynamic function changes. , 2002 .

[35]  R. Alcalde,et al.  Volumetric properties and viscosities of the methyl butanoate + n-heptane + n-octane ternary system and its binary constituents in the temperature range from 283.15 to 313.15 K , 2001 .

[36]  E. Carballo,et al.  Densities, Viscosities, and Related Properties of Some (Methyl Ester + Alkane) Binary Mixtures in the Temperature Range from 283.15 to 313.15 K , 2001 .

[37]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[38]  P. Bahadur,et al.  Densities, Relative Permittivities, Excess Volumes, and Excess Molar Polarizations for Alkyl Ester (Methyl Propanoate, Methyl Butanoate, Ethyl Propanoate, and Ethyl Butanoate) + Hydrocarbons (n-Heptane, Benzene, Chlorobenzene, and 1,1,2,2-Tetrachloroethane) at 308.15 K and 318.15 K , 1999 .

[39]  C. Seng,et al.  Viscosities and densities of the methyl esters of some n-alkanoic acids , 1992 .

[40]  J. Ortega Measurements of excess enthalpies of {a methyl n-alkanoate (from n-hexanoate to n-pentadecanoate) + n-pentadecane} at 298.15 K , 1990 .

[41]  John H. Dymond,et al.  The Tait equation: 100 years on , 1988 .

[42]  T. H. Gouw,et al.  Physical properties of fatty acid methyl esters. I. density and molar volume , 1964 .

[43]  G. H. Brown,et al.  Some Physical Properties of Certain C9 and C10 Aliphatic Acids and their Methyl Esters.2-Ethylheptanoic and Pelargonic Acids, and Methyl Esters of 2-Ethylpentanoic,Pelargonic, 2, 5-Diethyladipic, 2-Ethylsuberic, and Sebacic Acids. , 1960 .

[44]  C. W. Bonhorst,et al.  Esters of Naturally Occurring Fatty Acids - Physical Properties of Methyl, Propyl, and Isopropyl Esters of C6 to C18 Saturated Fatty Acids , 1948 .

[45]  A. Vogel 130. Physical properties and chemical constitution. Part XIII. Aliphatic carboxylic esters , 1948 .