Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films

[1]  A. Csík,et al.  Evolution of concentration profiles in Pd-Cu systems studied by SNMS technique , 2013 .

[2]  D. Beke,et al.  Kinetic pathways of diffusion and solid-state reactions in nanostructured thin films , 2013 .

[3]  N. Jöhrmann,et al.  FePtCu alloy thin films: Morphology, L10 chemical ordering, and perpendicular magnetic anisotropy , 2012 .

[4]  N. Boudet,et al.  Anomalous x-ray diffraction measurements of long-range order in (001)-texturedL10FePtCu thin films , 2012 .

[5]  A. Csík,et al.  Investigation of diffusional intermixing in Si/Co/Ta system by Secondary Neutral Mass Spectrometry , 2012 .

[6]  O. Hellwig,et al.  L10 FePtCu bit patterned media , 2012, Nanotechnology.

[7]  D. Beke,et al.  Grain boundary diffusion in thin films with a bimodal grain boundary structure , 2012 .

[8]  S. N. Piramanayagam,et al.  Developments in Data Storage: Materials Perspective , 2011 .

[9]  O. Hellwig,et al.  L10 FePt based exchange coupled composite bit patterned films , 2011 .

[10]  S. Inomata,et al.  Diffusion-induced recrystallization in the Cu(Pd) system at complete solid-solution temperatures , 2011 .

[11]  J. Lyubina,et al.  Structure and Magnetic Properties of L1 0-Ordered FePt Alloys and Nanoparticles , 2011 .

[12]  S. Curtarolo,et al.  First principles study of Ag, Au, and Cu surface segregation in FePt-L10 , 2010 .

[13]  G. Schmitz,et al.  The hidden link between diffusion-induced recrystallization and ideal strength of metals , 2010 .

[14]  D. Makarov,et al.  Perpendicular FePt-based exchange-coupled composite media , 2010 .

[15]  U. Welzel,et al.  Interdiffusion and stress development in Ni-Cu thin film diffusion couples , 2009 .

[16]  H. Oechsner,et al.  Quantitative characterization of solid state phases by secondary neutral mass spectrometry , 2009 .

[17]  U. Welzel,et al.  Interdiffusion, phase formation, and stress development in Cu-Pd thin-film diffusion couples: interface thermodynamics and mechanisms , 2008 .

[18]  K. Hono,et al.  Microstructure and magnetic properties of FePt-SiO2 granular films with Ag addition , 2008 .

[19]  G. Schmitz,et al.  Diffusion-induced recrystallization in silver–palladium layers , 2008 .

[20]  L. Péter,et al.  Electrodeposition of Ni–Co–Cu/Cu multilayers: 2. Calculations of the element distribution and experimental depth profile analysis , 2007 .

[21]  C. You,et al.  Particulate structure of FePt thin films enhanced by Au and Ag alloying , 2006 .

[22]  M. Kajihara Chemical driving force for diffusion-induced recrystallization or diffusion-induced grain boundary migration in a binary system consisting of nonvolatile elements , 2006 .

[23]  T. Takenaka,et al.  Fast penetration of Sn into Ag by diffusion induced recrystallization , 2006 .

[24]  B. H. Liu,et al.  Fabrication and microstructure of high coercivity FePt thin films at 400 °C , 2006 .

[25]  O. Penrose On the elastic driving force in diffusion-induced grain boundary motion , 2004 .

[26]  J. P. Wang,et al.  Promotion of L10 ordered phase transformation by the Ag top layer on FePt thin films , 2003 .

[27]  D. Nikles,et al.  Synthesis, chemical ordering, and magnetic properties of self-assembled FePt–Ag nanoparticles , 2003 .

[28]  T. Kai,et al.  Magnetic and electronic structures of FePtCu ternary ordered alloy , 2004 .

[29]  G. Schmitz,et al.  Interdiffusion and reaction of metals: The influence and relaxation of mismatch-induced stress , 2001 .

[30]  O. Kitakami,et al.  Low-temperature ordering of L10–CoPt thin films promoted by Sn, Pb, Sb, and Bi additives , 2001 .

[31]  S. Okamoto,et al.  Ordering and orientation of CoPt/SiO2 granular films with additive Ag , 2000 .

[32]  D. Yoon Chemically Induced Interface Migration in Solids , 1989 .