A novel particle swarm optimization approach for product design and manufacturing

This paper presents a novel optimization approach that is a new hybrid optimization approach based on the particle swarm optimization algorithm and receptor editing property of immune system. The aim of the present research is to develop a new optimization approach and then to apply it in the solution of optimization problems in both the design and manufacturing areas. A single-objective test problem, tension spring problem, pressure vessel design optimization problem taken from the literature and two case studies for multi-pass turning operations are solved by the proposed new hybrid approach to evaluate performance of the approach. The results obtained by the proposed approach for the case studies are compared with a hybrid genetic algorithm, scatter search algorithm, genetic algorithm, and integration of simulated annealing and Hooke-Jeeves pattern search.

[1]  Du-Ming Tsai,et al.  A simulated annealing approach for optimization of multi-pass turning operations , 1996 .

[2]  D. S. Ermer,et al.  Optimization of Multipass Turning With Constraints , 1981 .

[3]  Kazuhiro Saitou,et al.  Topology Optimization of Multicomponent Beam Structure via Decomposition-Based Assembly Synthesis , 2005 .

[4]  Faiz A. Al-Khayyal,et al.  Machine parameter selection for turning with constraints: an analytical approach based on geometric programming , 1991 .

[5]  Mu-Chen Chen,et al.  Optimization of multipass turning operations with genetic algorithms: A note , 2003 .

[6]  Sotirios K. Goudos,et al.  Microwave absorber optimal design using multi‐objective particle swarm optimization , 2006 .

[7]  Godfrey C. Onwubolu Tabu search-based algorithm for the TOC product mix decision , 2001 .

[8]  G. Boothroyd,et al.  Maximum Rate of Profit Criteria in Machining , 1976 .

[9]  P. Hajela,et al.  Immune network simulations in multicriterion design , 1999 .

[10]  Kazuaki Iwata,et al.  Optimization of Cutting Conditions for Multi-Pass Operations Considering Probabilistic Nature in Machining Processes , 1977 .

[11]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization , 2002 .

[12]  Krister Svanberg,et al.  Sequential integer programming methods for stress constrained topology optimization , 2007 .

[13]  Godfrey C. Onwubolu,et al.  Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization , 2004 .

[14]  Sebastián Lozano,et al.  A particle swarm optimization algorithm for part–machine grouping , 2006 .

[15]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[16]  A.A. Adly,et al.  Using the Particle Swarm Evolutionary Approach in Shape Optimization and Field Analysis of Devices Involving Nonlinear Magnetic Media , 2006, IEEE Transactions on Magnetics.

[17]  Yoke San Wong,et al.  Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing , 2005 .

[18]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[19]  D. S. Ermer,et al.  Optimization of the Constrained Machining Economics Problem by Geometric Programming , 1971 .

[20]  Yung C. Shin,et al.  Optimization of machining conditions with practical constraints , 1992 .

[21]  Katsundo Hitomi,et al.  A Study of Economical Machining , 1964 .

[22]  Singiresu S Rao,et al.  Determination of Optimum Machining Conditions—Deterministic and Probabilistic Approaches , 1976 .

[23]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[24]  Marc Schoenauer,et al.  ASCHEA: new results using adaptive segregational constraint handling , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[25]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[26]  R. Saravanan,et al.  Particle swarm optimization (PSO) algorithm for optimal machining allocation of clutch assembly , 2006 .

[27]  Yiit Karpat,et al.  Swarm-intelligent neural network system (SINNS) based multi-objective optimization of hard turning , 2006 .

[28]  R. C. Creese,et al.  A generalized multi-pass machining model for machining parameter selection in turning , 1995 .

[29]  Carlos A. Coello Coello,et al.  Hybridizing a genetic algorithm with an artificial immune system for global optimization , 2004 .

[30]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[31]  R. Saravanan,et al.  Application of particle swarm optimisation in artificial neural network for the prediction of tool life , 2006 .

[32]  Hazim El-Mounayri,et al.  Prediction of surface roughness in end milling using swarm intelligence , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[33]  Leandro Nunes de Castro,et al.  Artificial Immune Systems: Part I-Basic Theory and Applications , 1999 .

[34]  Hazim El-Mounayri,et al.  NC end milling optimiza-tion using evolutionary computation , 2002 .

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  R. Saravanan,et al.  Optimization of multi-pass turning operations using ant colony system , 2003 .

[37]  Necmettin Kaya,et al.  Hybrid multi-objective shape design optimization using Taguchi’s method and genetic algorithm , 2007 .

[38]  James C. Bean,et al.  A Genetic Algorithm for the Multiple-Choice Integer Program , 1997, Oper. Res..

[39]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[40]  Alireza Rahimi-Vahed,et al.  A multi-objective particle swarm for a flow shop scheduling problem , 2006, J. Comb. Optim..

[41]  Barron J. Bichon,et al.  Design of Steel Frames Using Ant Colony Optimization , 2005 .

[42]  G. K. Lal,et al.  Determination of optimal subdivision of depth of cut in multipass turning with constraints , 1995 .

[43]  R. Saravanan,et al.  Optimization of Surface Grinding Operations Using Particle Swarm Optimization Technique , 2005 .

[44]  A R Yildiz,et al.  Hybrid enhanced genetic algorithm to select optimal machining parameters in turning operation , 2006 .

[45]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[46]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[47]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[48]  Ali R. Yildiz,et al.  A novel hybrid immune algorithm for global optimization in design and manufacturing , 2009 .

[49]  Mu-Chen Chen,et al.  Optimizing machining economics models of turning operations using the scatter search approach , 2004 .

[50]  Zbigniew Michalewicz,et al.  Evolutionary optimization of constrained problems , 1994 .

[51]  Kazuhiro Saitou,et al.  Topology synthesis of multi-component structural assemblies in continuum domains , 2008, DAC 2008.

[52]  B. Bochenek,et al.  Structural optimization for post-buckling behavior using particle swarms , 2006 .

[53]  G. C. Onwubolu,et al.  Optimization of multipass turning operations with genetic algorithms , 2001 .

[54]  Kalyanmoy Deb,et al.  GeneAS: A Robust Optimal Design Technique for Mechanical Component Design , 1997 .

[55]  Weijun Xia,et al.  A hybrid particle swarm optimization approach for the job-shop scheduling problem , 2006 .

[56]  Keigo Watanabe,et al.  Evolutionary Optimization of Constrained Problems , 2004 .

[57]  Dilbag Singh,et al.  Optimization of Tool Geometry and Cutting Parameters for Hard Turning , 2007 .

[58]  Jean Coibion Optimization of Multi-Pass Machining Operations , 1971 .

[59]  A. George,et al.  Receptor editing during affinity maturation. , 1999, Immunology today.

[60]  Shu-Kai S. Fan,et al.  Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions , 2004 .

[61]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[62]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[63]  Necmettin Kaya Optimal design of an automotive diaphragm spring with high fatigue resistance , 2006 .