A New Template Update Scheme for Visual Tracking

Single object tracking can be focused on two phases under the particle filter framework: one is sparse representation, which can be regarded as a matching evaluation; the other is template update, which can be regarded as the appearance changes of the target. Template update is the most direct and basic phase to ensure a high quality tracking. However, most template update schemes can not capture the latest appearance of the target, thereby leading to a low quality tracking. In this paper, we propose a new template update scheme, which can obtain the latest trends of the target. The experimental results on popular benchmark video sequences show that the proposed template update scheme is feasible and effective.

[1]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[2]  Zhenyu He,et al.  One global optimization method in network flow model for multiple object tracking , 2015, Knowl. Based Syst..

[3]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Zhenyu He,et al.  Visual tracking via exemplar regression model , 2016, Knowl. Based Syst..

[7]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[8]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Zhenyu He,et al.  Robust Object Tracking via Key Patch Sparse Representation , 2017, IEEE Transactions on Cybernetics.

[10]  Michael Elad,et al.  Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model , 2013, IEEE Transactions on Signal Processing.

[11]  Erik Blasch,et al.  Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection (PREPRINT) , 2011 .

[12]  Larry S. Davis,et al.  Learning a discriminative dictionary for sparse coding via label consistent K-SVD , 2011, CVPR 2011.

[13]  Zhenyu He,et al.  A novel joint tracker based on occlusion detection , 2014, Knowl. Based Syst..

[14]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[16]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Zhenyu He,et al.  A robust local sparse tracker with global consistency constraint , 2015, Signal Process..

[18]  Zhenyu He,et al.  Connected Component Model for Multi-Object Tracking , 2016, IEEE Transactions on Image Processing.

[19]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[20]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[21]  Zhenyu He,et al.  Single object tracking via robust combination of particle filter and sparse representation , 2015, Signal Process..