The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system

This review will discuss the in vivo physical chemical relaxation properties of superparamagnetic iron oxide particles. Various parameters such as size, magnetization, compartmentalization and water exchange effects and how these alter the behavior of the iron oxide particles in an in vitro vs an in vivo situation with special reference to the cardiovascular system will be exemplified. Furthermore, applications using iron oxide particles for vascular, perfusion and viability imaging as well as assessment of the inflammatory status of a given tissue will be discussed. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  Maythem Saeed,et al.  MR imaging of spatial extent of microvascular injury in reperfused ischemically injured rat myocardium: value of blood pool ultrasmall superparamagnetic particles of iron oxide. , 2002, Radiology.

[2]  Yoshimi Anzai,et al.  MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent , 1997, Journal of magnetic resonance imaging : JMRI.

[3]  E.,et al.  Paramagnetic Metal Complexes as Water Proton Relaxation Agents for NMR Imaging : Theory and Design , 2001 .

[4]  R. Chandra,et al.  Weak-Diffusion Theory of NMR Signal in Magnetically Heterogeneous Media , 1997 .

[5]  A. Baert,et al.  Detection of liver metastases with superparamagnetic iron oxide in 15 patients: results of MR imaging at 1.5 T. , 1989, AJR. American journal of roentgenology.

[6]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[7]  B. Marincek,et al.  Detection of liver metastases: comparison of superparamagnetic iron oxide-enhanced and unenhanced MR imaging at 1.5 T with dynamic CT, intraoperative US, and percutaneous US. , 1995, Radiology.

[8]  O. Haraldseth,et al.  Use of the mean transit time of an intravascular contrast agent as an exchange‐insensitive index of myocardial perfusion , 1999, Journal of magnetic resonance imaging : JMRI.

[9]  M. Bock,et al.  Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): Results in animals and humans with renal artery stenosis , 2003, Magnetic resonance in medicine.

[10]  P. Lauterbur,et al.  Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen , 1986, Magnetic resonance in medicine.

[11]  Y Zhang,et al.  Magnetic resonance imaging detection of rat renal transplant rejection by monitoring macrophage infiltration. , 2000, Kidney international.

[12]  H. Kantor,et al.  Magnetic resonance imaging with superparamagnetic iron oxide particles for the detection of myocardial reperfusion. , 1991, Magnetic resonance imaging.

[13]  Philippe Robert,et al.  Comparison of Different Types of Blood Pool Agents (P792, MS325, USPIO) in a Rabbit MR Angiography-like Protocol , 2003, Investigative radiology.

[14]  R. Judd,et al.  Effects of Myocardial Water Exchange on T1 Enhancement during Bolus Administration of MR Contrast Agents , 1995, Magnetic resonance in medicine.

[15]  S B Reeder,et al.  Effects of water exchange on the measurement of myocardial perfusion using paramagnetic contrast agents , 1999, Magnetic resonance in medicine.

[16]  Maythem Saeed,et al.  Blood pool contrast‐enhanced MRI detects suppression of microvascular permeability in early postinfarction reperfusion after nicorandil therapy , 2002, Magnetic resonance in medicine.

[17]  D. Revel,et al.  Ultrasmall superparamagnetic iron oxide particles (AMI 227) as a blood pool contrast agent for MR angiography: Experimental study in rabbits , 1997, Journal of magnetic resonance imaging : JMRI.

[18]  S. Schmitz,et al.  [SPIO-enhanced MR angiography for the detection of venous thrombi in an animal model]. , 1999, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[19]  A. Koretsky,et al.  Detection of inflammation following renal ischemia by magnetic resonance imaging. , 2003, Kidney international.

[20]  A. Bjørnerud,et al.  A targeted contrast agent for magnetic resonance imaging of thrombus: Implications of spatial resolution , 2001, Journal of magnetic resonance imaging : JMRI.

[21]  C. Lorenz,et al.  Benefit of T1 reduction for magnetic resonance coronary angiography: A numerical simulation and phantom study , 1999, Journal of magnetic resonance imaging : JMRI.

[22]  Michael Jerosch-Herold,et al.  Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion , 1999, The International Journal of Cardiac Imaging.

[23]  J. Debatin,et al.  Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits , 2001, Circulation.

[24]  Örjan Smedby,et al.  Segmentation with gray‐scale connectedness can separate arteries and veins in MRA , 2002, Journal of magnetic resonance imaging : JMRI.

[25]  E. Haacke,et al.  Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime , 1994, Magnetic resonance in medicine.

[26]  R M Weisskoff,et al.  Water diffusion and exchange as they influence contrast enhancement , 1997, Journal of magnetic resonance imaging : JMRI.

[27]  A. Ragnarsson,et al.  Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. , 1999, Radiology.

[28]  Improved cine cardiovascular magnetic resonance using Clariscan (NC100150 injection). , 2001, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[29]  R Weissleder,et al.  Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. , 1988, Radiology.

[30]  S. Saini,et al.  MR contrast material for vascular enhancement: value of superparamagnetic iron oxide. , 1996, AJR. American journal of roentgenology.

[31]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[32]  Ying Sun,et al.  Improving spatiotemporal resolution of USPIO-enhanced dynamic imaging of rat kidneys. , 2003, Magnetic resonance imaging.

[33]  R. Wilson,et al.  Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. , 1997, Radiology.

[34]  G. Adam,et al.  [Experimental evaluation of superparamagnetic iron oxide particles in pulmonary MR angiography]. , 1998, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[35]  M. Fabry,et al.  Water exchange between red cells and plasma. Measurement by nuclear magnetic relaxation. , 1975, Biophysical journal.

[36]  C. S. Springer,et al.  Physicochemical Principles Influencing Magnetopharmaceuticals , 1994 .

[37]  G. Adam,et al.  Abdominal MR angiography performed using blood pool contrast agents: comparison of a new superparamagnetic iron oxide nanoparticle and a linear gadolinium polymer. , 1998, AJR. American journal of roentgenology.

[38]  Sverre Rosenbaum,et al.  Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart , 2001, Magnetic resonance in medicine.

[39]  B. Rutt,et al.  Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. , 2000, Radiology.

[40]  A. Ericsson,et al.  Relaxation Enhancement of the Dog Liver and Spleen by Biodegradable Superparamagnetic Particles in Proton Magnetic Resonance Imaging , 1987, Acta radiologica.

[41]  S. H. Koenig,et al.  Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles , 1995, Magnetic resonance in medicine.

[42]  Atle Bjørnerud,et al.  Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. , 2003, Radiology.

[43]  D. Baumann,et al.  Macrophage labeling by SPIO as an early marker of allograft chronic rejection in a rat model of kidney transplantation , 2003, Magnetic Resonance in Medicine.

[44]  Elna-Marie Larsson,et al.  MR venography using an intravascular contrast agent: results from a multicenter phase 2 study of dosage. , 2003, AJR. American journal of roentgenology.

[45]  C. Higgins,et al.  Three‐dimensional MR imaging of pulmonary vessels and parenchyma with NC100150 injection (Clariscan™) , 2000, Journal of magnetic resonance imaging : JMRI.

[46]  M. E. Kooi,et al.  Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging , 2003, Circulation.

[47]  E M Haacke,et al.  Artery and vein separation using susceptibility‐dependent phase in contrast‐enhanced MRA , 2000, Journal of magnetic resonance imaging : JMRI.

[48]  K. Ho,et al.  Multicenter phase-II trial of safety and efficacy of NC100150 for steady-state contrast-enhanced peripheral magnetic resonance angiography , 2003, European Radiology.

[49]  Sabrina S Wilson Radiology , 1938, Glasgow Medical Journal.

[50]  A. Bjørnerud,et al.  Assessment of T1 and T  *2 effects in vivo and ex vivo using iron oxide nanoparticles in steady state—dependence on blood volume and water exchange , 2002, Magnetic resonance in medicine.

[51]  A. Bjørnerud,et al.  Renal T  *2 perfusion using an iron oxide nanoparticle contrast agent—influence of T1 relaxation on the first‐pass response , 2002, Magnetic resonance in medicine.

[52]  Håkan Ahlström,et al.  Evaluation of nonperfused myocardial ischemia with MRI and an intravascular USPIO contrast agent in an ex vivo pig model , 2000, Journal of magnetic resonance imaging : JMRI.

[53]  B Hamm,et al.  New generation of monomer‐stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: Preclinical results in rats and rabbits , 2000, Journal of magnetic resonance imaging : JMRI.

[54]  C. Combe,et al.  USPIO-enhanced MR imaging of glycerol-induced acute renal failure in the rabbit. , 1995, Magnetic resonance imaging.

[55]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[56]  A. Sukstanskii,et al.  Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities. Effects of impermeable susceptibility inclusions. , 2004, Journal of magnetic resonance.

[57]  Bartley P. Griffith,et al.  Macrophage Accumulation Associated With Rat Cardiac Allograft Rejection Detected by Magnetic Resonance Imaging With Ultrasmall Superparamagnetic Iron Oxide Particles , 2001, Circulation.

[58]  J. Debatin,et al.  Three-dimensional contrast-enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study , 2000, European Radiology.

[59]  P F Renshaw,et al.  Ferromagnetic contrast agents: A new approach , 1986, Magnetic resonance in medicine.

[60]  A. Bjørnerud,et al.  NC100150-Enhanced 3D-SPGR MR Angiography of the Common Carotid Artery in a Pig Vascular Stenosis Model , 1999, Acta radiologica.

[61]  D Revel,et al.  Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T1-weighted MRI. , 1993, Magnetic resonance imaging.

[62]  S. Posse,et al.  Analytical model of susceptibility‐induced MR signal dephasing: Effect of diffusion in a microvascular network , 1999, Magnetic resonance in medicine.

[63]  A E Stillman,et al.  Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. , 1996, Journal of computer assisted tomography.

[64]  Lars E Olsson,et al.  Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities. , 2002, Magnetic resonance imaging.

[65]  V G Kiselev On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI , 2001, Magnetic resonance in medicine.

[66]  C H Lorenz,et al.  Characterization of t1 relaxation and blood‐myocardial contrast enhancement of NC100150 injection in cardiac MRI , 1999, Journal of magnetic resonance imaging : JMRI.

[67]  Ralph Weissleder,et al.  Long-circulating iron oxides for MR imaging , 1995 .

[68]  Kevin M. Johnson,et al.  Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo , 2000, Magnetic resonance in medicine.

[69]  Nicolaas Bloembergen,et al.  Proton Relaxation Times in Paramagnetic Solutions , 1957 .

[70]  C. Patlak,et al.  Susceptibility changes following bolus injections , 1993, Magnetic resonance in medicine.

[71]  M. Oudkerk,et al.  Three-dimensional magnetic resonance coronary angiography using a new blood pool contrast agent: initial experience. , 2002, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[72]  S. Schmitz,et al.  USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. , 2001, Radiology.

[73]  C. Higgins,et al.  Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities , 1998, European Radiology.

[74]  S. H. Koenig,et al.  Transverse Relaxation (1/T2) of Solvent Protons Induced by Magnetized Spheres and Its Relevance to Contrast Enhancement in MRI , 1988, Investigative radiology.

[75]  Max A. Viergever,et al.  Level-set-based artery-vein separation in blood pool agent CE-MR angiograms , 2003, IEEE Transactions on Medical Imaging.

[76]  C. Higgins,et al.  Use of intravascular contrast agents in MRI. , 1998, Academic radiology.

[77]  M. Prince Gadolinium-enhanced MR aortography. , 1990, Radiology.

[78]  I. Lucet,et al.  Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. , 1996, Journal of microencapsulation.

[79]  S. H. Koenig,et al.  The raw and the cooked, or the importance of the motion of water for MRI revisited. , 1988, Investigative radiology.

[80]  Ralph Weissleder,et al.  Colloidal magnetic resonance contrast agents : effect of particle surface on biodistribution , 1993 .

[81]  J. Bowles Iron Oxides in the Laboratory , 1992, Mineralogical Magazine.

[82]  P. Choyke,et al.  MR angiography using steady‐state free precession , 2002, Magnetic resonance in medicine.

[83]  L. Johansson,et al.  Abdominal vessel enhancement with an ultrasmall, superparamagnetic iron oxide blood pool agent: evaluation of dose and echo time dependence at different field strengths. , 1999, Academic radiology.

[84]  G. Adam,et al.  Experimentelle Erprobung superparamagnetischer Eisenoxidnanopartikel für die MR-Pulmonalisangiographie , 1998 .

[85]  Emmanuelle Canet,et al.  Contrast‐enhanced 3D‐TOF MRA of peripheral vessels: Intravascular versus extracellular MR contrast media , 1998, Journal of magnetic resonance imaging : JMRI.

[86]  Michael Bock,et al.  Quantification of renal perfusion using an intravascular contrast agent (part 1): Results in a canine model , 2003, Magnetic resonance in medicine.

[87]  R Deichmann,et al.  Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent , 1997, Magnetic resonance in medicine.

[88]  T J Brady,et al.  Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. , 1987, Radiology.

[89]  First-pass myocardial perfusion MR imaging with outer-volume suppression and the intravascular contrast agent NC100150 injection: preliminary results in eight patients. , 2001, Radiology.

[90]  O. Haraldseth,et al.  New intravascular contrast agent applied to dynamic contrast enhanced MR imaging of human breast cancer. , 2003, Acta radiologica.

[91]  N. Grenier,et al.  Evaluation of experimentally induced renal hypoperfusion using iron oxide particles and fast magnetic resonance imaging. , 1995, Academic radiology.

[92]  D. Pennell,et al.  Initial experience with the intravascular contrast agent NC100150‐injection (Clariscan®) for breath‐hold and navigator‐gated magnetic resonance coronary artery imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[93]  Evaluation of portal MR angiography using superparamagnetic iron oxide , 1997, Journal of magnetic resonance imaging : JMRI.

[94]  L. Johansson,et al.  Acute cardiac transplant rejection: detection and grading with MR imaging with a blood pool contrast agent--experimental study in the rat. , 2002, Radiology.

[95]  R. Weissleder,et al.  Enhancement of MR angiography with iron oxide: preliminary studies in whole-blood phantom and in animals. , 1994, AJR. American journal of roentgenology.

[96]  J. Franconi,et al.  First‐pass evaluation of renal perfusion with turboflash MR imaging and superparamagnetic iron oxide particles , 1993, Journal of magnetic resonance imaging : JMRI.

[97]  K J Wolf,et al.  MR angiography with superparamagnetic iron oxide: feasibility study. , 1999, Radiology.

[98]  W Semmler,et al.  Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in Vivo by using transferrin receptor pathways , 1998, Magnetic resonance in medicine.

[99]  T J Brady,et al.  Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. , 1992, Radiology.

[100]  T. Allkemper,et al.  Contrast‐enhanced 3D‐MRA of the upper abdomen with a bolus‐injectable SPIO (SH U 555 A) , 1999, Journal of magnetic resonance imaging : JMRI.

[101]  H. Schild,et al.  Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan®, (NC100150) for MRI of renal perfusion: Experimental study in an animal model , 2002, Journal of Magnetic Resonance Imaging.

[102]  A E Stillman,et al.  Use of an intravascular T1 contrast agent to improve MR cine myocardial‐blood pool definition in man , 1997, Journal of magnetic resonance imaging : JMRI.

[103]  Robert N. Muller,et al.  Theory of proton relaxation induced by superparamagnetic particles , 1999 .

[104]  Jayaram K. Udupa,et al.  Artery-vein separation via MRA-An image processing approach , 2001, IEEE Transactions on Medical Imaging.

[105]  B. Griffith,et al.  A novel approach with magnetic resonance imaging used for the detection of lung allograft rejection. , 2000, The Journal of thoracic and cardiovascular surgery.

[106]  B. Hamm,et al.  Wertigkeit des leberspezifischen superparamagnetischen Kontrastmittels AMI-25 für die Detektion und Differentialdiagnose lebereigener Tumoren versus Metastasen , 1994 .

[107]  J. Sandstede,et al.  Breath-hold 3D MR coronary angiography with a new intravascular contrast agent (feruglose)--first clinical experiences. , 2001, Magnetic resonance imaging.

[108]  F. Franconi,et al.  High Field Magnetic Resonance Imaging Evaluation of Superparamagnetic Iron Oxide Nanoparticles in a Permanent Rat Myocardial Infarction , 2003, Investigative radiology.

[109]  C. Lorenz,et al.  High-resolution magnetic resonance coronary angiography of the entire heart using a new blood-pool agent, NC100150 injection: comparison with invasive x-ray angiography in pigs. , 1999, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[110]  R Weissleder,et al.  Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties , 1993, Magnetic resonance in medicine.

[111]  E. Fleck,et al.  Improvement of image quality of non‐invasive coronary artery imaging with magnetic resonance by the use of the intravascular contrast agent Clariscan™ (NC100150 injection) in patients with coronary artery disease , 2003, Journal of magnetic resonance imaging : JMRI.

[112]  N Grenier,et al.  Evaluation of Intrarenal Distribution of Ultrasmall Superparamagnetic Iron Oxide Particles by Magnetic Resonance Imaging and Modification by Furosemide and Water Restriction , 1994, Investigative radiology.

[113]  A. Roch,et al.  Transverse relaxivity of particulate MRI contrast media: From theories to experiments , 1991, Magnetic resonance in medicine.

[114]  Milan Sonka,et al.  Highly automated segmentation of arterial and venous trees from three-dimensional magnetic resonance angiography (MRA) , 2004, The International Journal of Cardiovascular Imaging.

[115]  Y Amano,et al.  Three‐dimensional cardiac cine magnetic resonance imaging with an ultrasmall superparamagnetic iron oxide blood pool agent (NC100150) , 2000, Journal of magnetic resonance imaging : JMRI.

[116]  A. Kaim,et al.  MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. , 2002, Radiology.

[117]  J Keegan,et al.  Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography , 1999, Journal of magnetic resonance imaging : JMRI.

[118]  S. Schmitz,et al.  Iron-Oxide-Enhanced Magnetic Resonance Imaging of Atherosclerotic Plaques: Postmortem Analysis of Accuracy, Inter-Observer Agreement, and Pitfalls , 2002, Investigative Radiology.

[119]  Guang-Zhong Yang,et al.  First‐pass myocardial perfusion imaging and equilibrium signal changes using the intravascular contrast agent NC100150 injection , 1999, Journal of magnetic resonance imaging : JMRI.

[120]  P. Knolle,et al.  Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. , 2001, Trends in immunology.

[121]  U. Schwertmann,et al.  Iron Oxides in Laboratory , 1993 .

[122]  Ying Wang,et al.  Regional myocardial blood volume and flow: First‐pass MR imaging with polylysine‐Gd‐DTPA , 1995, Journal of magnetic resonance imaging : JMRI.

[123]  B. Persson,et al.  Mr Imaging, Flow and Motion , 1992, Acta radiologica.

[124]  G. V. Chester,et al.  Solid State Physics , 2000 .

[125]  B. Rosen,et al.  MR Contrast Due to Microscopically Heterogeneous Magnetic Susceptibility: Numerical Simulations and Applications to Cerebral Physiology , 1991, Magnetic resonance in medicine.

[126]  C. Bremer,et al.  Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. , 2002, Radiology.

[127]  B Hamm,et al.  Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles , 2001, Journal of magnetic resonance imaging : JMRI.

[128]  P. Teirstein,et al.  Cost-Effectiveness of Gamma Radiation for Treatment of In-Stent Restenosis: Results From the Gamma-1 Trial , 2002, Circulation.

[129]  A. Bjørnerud,et al.  NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive‐contrast MR angiography , 2000, Journal of magnetic resonance imaging : JMRI.

[130]  M. Naghavi,et al.  Superparamagnetic Iron Oxide–Based Method for Quantifying Recruitment of Monocytes to Mouse Atherosclerotic Lesions In Vivo: Enhancement by Tissue Necrosis Factor-&agr;, Interleukin-1&bgr;, and Interferon-&ggr; , 2003, Circulation.

[131]  Application of superparamagnetic iron oxide (AMI-227) for 3D phase-contrast MR angiography. , 1998, Academic radiology.

[132]  A. Tanimoto,et al.  Enhancement of phase‐contrast MR angiography with superparamagnetic iron oxide , 1998, Journal of magnetic resonance imaging : JMRI.

[133]  M. Bock,et al.  Determination of regional blood volume and intra‐extracapillary water exchange in human myocardium using Feruglose: First clinical results in patients with coronary artery disease , 2002, Magnetic resonance in medicine.

[134]  D. Pennell,et al.  Use of the intravascular contrast agent NC100150 injection in spin-echo and gradient-echo imaging of the heart. , 1999, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[135]  G. V. von Schulthess,et al.  Multislice breath‐hold spiral magnetic resonance coronary angiography in patients with coronary artery disease: Effect of intravascular contrast medium , 2002, Journal of magnetic resonance imaging : JMRI.

[136]  Christina J. Herold,et al.  MRA of the lower extremities in patients with pulmonary embolism using a blood pool contrast agent: Initial experience , 2002, Journal of magnetic resonance imaging : JMRI.

[137]  J. Idee,et al.  Reversibility of experimental acute renal failure in rats: Assessment with USPIO‐enhanced MR imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[138]  Qing Ye,et al.  USPIO‐enhanced dynamic MRI: Evaluation of normal and transplanted rat kidneys , 2001, Magnetic resonance in medicine.

[139]  O. Simonetti,et al.  Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. , 2001, Radiology.

[140]  S. H. Koenig,et al.  Transverse relaxation of solvent protons induced by magnetized spheres: Application to ferritin, erythrocytes, and magnetite , 1987, Magnetic resonance in medicine.

[141]  A. Bjørnerud,et al.  Assessment of myocardial blood volume and water exchange: Theoretical considerations and in vivo results , 2003, Magnetic resonance in medicine.

[142]  R J van der Geest,et al.  Ultrasmall superparamagnetic particles of iron oxide (USPIO) MR imaging of infarcted myocardium in pigs. , 1998, Magnetic resonance imaging.