Recent Advances in Fluid–Structure Interaction Simulations of Wind Turbines

In this chapter the numerical challenges of simulating aerodynamics and fluid–structure interaction (FSI) of wind turbines are summarized, and the recently developed computational methods that address these challenges are presented. Several wind-turbine computations at full scale and with full complexity of the geometry and material composition are presented, which illustrate the accuracy, robustness, and general applicability of the methods developed for this problem class.

[1]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[2]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[3]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[4]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[5]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[6]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[7]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[8]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[9]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[10]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[11]  A. Korobenko,et al.  Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data , 2015 .

[12]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[13]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[14]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[15]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[16]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[17]  A. Korobenko,et al.  ALE–VMS formulation for stratified turbulent incompressible flows with applications , 2015 .

[18]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[19]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[20]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[21]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[22]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[23]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[24]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[25]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[26]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[27]  Xiaowei Deng,et al.  Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines , 2014 .

[28]  Yuri Bazilevs,et al.  Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .

[29]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[30]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[31]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[32]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[33]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[34]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[35]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[36]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[37]  Yuri Bazilevs,et al.  A computational procedure for prebending of wind turbine blades , 2012 .

[38]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[39]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[40]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[41]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[42]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .