Characterization and genomic analysis of the vibrio phage R01 lytic to Vibrio parahaemolyticus

[1]  Xiaohui Zhou,et al.  Application and challenge of bacteriophage in the food protection. , 2022, International journal of food microbiology.

[2]  Xinchun Liu,et al.  Bacteriophage therapy in aquaculture: current status and future challenges , 2022, Folia Microbiologica.

[3]  Kaliyamurthi Venkatachalam,et al.  A critical review on the antimicrobial resistance, antibiotic residue and metagenomics‐assisted antimicrobial resistance gene detection in freshwater aquaculture environment , 2021, Aquaculture Research.

[4]  S. Leptihn,et al.  Application of bacteriophages and endolysins in aquaculture as a biocontrol measure , 2021 .

[5]  S. Ha,et al.  Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review , 2020, Critical reviews in food science and nutrition.

[6]  Chengping Lu,et al.  Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila , 2020, BMC Microbiology.

[7]  Xiaoyu Li,et al.  Exploring the effects of phage cocktails in preventing Vibrio infections in juvenile sea cucumber (Apostichopus japonicus) farming , 2020 .

[8]  Xiaoyu Li,et al.  Genome sequence analysis of Vibrio parahaemolyticus lytic phage Vp_R1 with a C3 morphotype , 2019, Archives of Virology.

[9]  S. Wong,et al.  Vibrio parahaemolyticus: The protagonist of foodborne diseases , 2019, Progress In Microbes & Molecular Biology.

[10]  Xiaoyu Li,et al.  Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicus , 2019, Aquaculture.

[11]  K. Dąbrowska Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review , 2019, Medicinal research reviews.

[12]  P. Turner,et al.  Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. , 2019, Cell host & microbe.

[13]  F. Ramos,et al.  Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. , 2018, International journal of antimicrobial agents.

[14]  B. N. Tripathi,et al.  Isolation and characterization of a novel, T7-like phage against Aeromonas veronii , 2018, Virus Genes.

[15]  Ana Rodríguez,et al.  Phage or foe: an insight into the impact of viral predation on microbial communities , 2018, The ISME Journal.

[16]  P. Srinivasan,et al.  Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. , 2017, Veterinary microbiology.

[17]  Xiang-zhou Meng,et al.  Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. , 2017, Environmental pollution.

[18]  Xiaoyu Li,et al.  Using Phage PSM‐1 to Control Shewanella marisflavi Infection in Juvenile Sea Cucumber, Apostichopus japonicus , 2017 .

[19]  P. Srinivasan,et al.  Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India. , 2016, Biologicals : journal of the International Association of Biological Standardization.

[20]  S. Parveen,et al.  Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. , 2016, Food microbiology.

[21]  K. Tang,et al.  Potential application of bacteriophage pVp-1: Agent combating Vibrio parahaemolyticus strains associated with acute hepatopancreatic necrosis disease (AHPND) in shrimp , 2016 .

[22]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[23]  V. Karuppiah,et al.  Protective effect of phages on experimental V. parahaemolyticus infection and immune response in shrimp (Fabricius, 1798) , 2016 .

[24]  S. Choi,et al.  Vibrio vulnificus Bacteriophage SSP002 as a Possible Biocontrol Agent , 2013, Applied and Environmental Microbiology.

[25]  David W. Cheung,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[26]  Â. Cunha,et al.  Bacteriophage therapy as a bacterial control strategy in aquaculture , 2012, Aquaculture International.

[27]  M. Griffiths,et al.  Genome Sequence of Temperate Vibrio parahaemolyticus Bacteriophage vB_VpaS_MAR10 , 2012, Journal of Virology.

[28]  Matthew Berriman,et al.  Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data , 2011, Bioinform..

[29]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[30]  M. Quilici,et al.  Total and pathogenic Vibrio parahaemolyticus in shrimp: fast and reliable quantification by real-time PCR. , 2010, International journal of food microbiology.

[31]  C. Rees,et al.  Bacteriophage applications: where are we now? , 2010, Letters in applied microbiology.

[32]  S. Rutjes,et al.  Pathogenic Vibrio species in dutch shellfish destined for direct human consumption. , 2010, Journal of food protection.

[33]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[34]  T. Nakai,et al.  Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. , 2010, Veterinary microbiology.

[35]  R. L. Harrison,et al.  Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019) , 2019, Archives of Virology.

[36]  A. Kropinski,et al.  Bacteriophage Taxonomy: An Evolving Discipline. , 2018, Methods in molecular biology.