Enhancement of group velocity via homogenization: isotropic and anisotropic dielectric scenarios

Under certain circumstances, the magnitude of the group velocity in a homogenized composite material (HCM) can exceed that of the group velocity in its constituent materials. An enhancement in the magnitude of group velocity in isotropic as well as anisotropic dielectric HCMs is predicted by the application of the Bruggeman formalism for the homogenization of two constituent dielectric materials, one of which is characterized by a relatively large permittivity and relatively small frequency-dispersion as compared with the other constituent material. Group-velocity enhancement is sensitively dependent upon the shape and orientation of the constituent particles.

[1]  Knut Sølna,et al.  Can Mixing Materials Make Electromagnetic Signals Travel Faster? , 2002, SIAM J. Appl. Math..

[2]  Lei Gao,et al.  Enhanced group velocity in composite media of particles with non-spherical shape or shape distribution , 2005 .

[3]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[4]  A. Lakhtakia Polarizability dyadics of small chiral ellipsoids , 1990 .

[5]  T. Mackay,et al.  Linear and Nonlinear Homogenized Composite Mediums as Metamaterials , 2005 .

[6]  A. Lakhtakia,et al.  Anisotropic enhancement of group velocity in a homogenized dielectric composite medium , 2005, physics/0506129.

[7]  Uniaxial dielectric media with hyperbolic dispersion relations , 2005, physics/0506057.

[8]  A. Sihvola,et al.  Electrostatics of an anisotropic ellipsoid in an anisotropic environment , 1996 .

[9]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[10]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[11]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[13]  A. Lakhtakia,et al.  Time-harmonic electromagnetic fields in source regions in a simple uniaxial bianisotropic medium. , 1994 .

[14]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[15]  D. Pozar,et al.  Theory of electromagnetic waves , 1984, IEEE Antennas and Propagation Society Newsletter.

[16]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[17]  Tom G. Mackay,et al.  Needles and pillboxes in anisotropic mediums , 2002 .

[18]  J. Kong,et al.  Scattering of electromagnetic waves from random media with strong permittivity fluctuations. [with application to atmospheric turbulence effects on microwave remote sensing] , 1981 .

[19]  L. Ward,et al.  The Optical Constants of Bulk Materials and Films , 1988 .

[20]  Rodger M. Walser,et al.  Metamaterials: An Introduction , 2003 .