Range statistics and equivalence tests

This paper investigates range statistics and its application on the hypothesis testing of equivalence of mean of multiple systems. We develop an equivalence-testing procedure that allows unequal variances among systems and discuss how to estimate the required critical constant, that is, quantiles of a range. A table of critical constants is provided for implementing the procedure. An experimental performance evaluation demonstrates the validity and efficiency of the procedure.

[1]  W. David Kelton,et al.  Estimating steady-state distributions via simulation-generated histograms , 2008, Comput. Oper. Res..

[2]  H. Finner,et al.  Some general results on least favorable parameter configurations with special reference to equivalence testing and the range statistic , 1991 .

[3]  L. H. C. Tippett,et al.  ON THE EXTREME INDIVIDUALS AND THE RANGE OF SAMPLES TAKEN FROM A NORMAL POPULATION , 1925 .

[4]  E. Jack Chen Some insights of using common random numbers in selection procedures , 2013, Discret. Event Dyn. Syst..

[5]  E. Jack Chen,et al.  A New Approach to Estimate the Critical Constant of Selection Procedures , 2010, Adv. Decis. Sci..

[6]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[7]  E. J. Gumbel The Distribution of the Range , 1947 .

[8]  E. J. Chen,et al.  The range statistic and procedures to select the best systems , 2011, J. Simulation.

[9]  Anirban DasGupta,et al.  Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics , 2011 .

[10]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[11]  S. Dalal,et al.  ALLOCATION OF OBSERVATIONS IN RANKING AND SELECTION WITH UNEQUAL VARIANCES , 1971 .

[12]  M. Genton,et al.  On the exact distribution of linear combinations of order statistics from dependent random variables , 2007 .

[13]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[14]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[15]  D. McNickle,et al.  ANALYSIS OF THE TIME EVOLUTION OF QUANTILES IN SIMULATION , 2006 .