An extension of the exponential formula in enumerative combinatorics

Let $\alpha$ be a formal variable and $F_w$ be a weighted species of structures (class of structures closed under weight-preserving isomorphisms) of the form ${F}_{w} = E({F}_{w}^{c})$, where $E$ and $F_w^c$ respectively denote the species of sets and of connected $F_w$ -structures . Multiplying by $\alpha$ the weight of each $F_w^c$-structure yields the species ${F}_{{w}^{( \alpha )}} = E({F}_{ \alpha w}^{c})$. We introduce a "universal" virtual weighted species, $\Lambda ^{(\alpha)}$, such that $F_{w^{(\alpha)}} = \Lambda^{( \alpha)}\, \circ \, F_w^+$, where $F_w^+$ denotes the species of non-empty $F_w$-structures. Using general properties of $\Lambda^{( \alpha)}$ , we compute the various enumerative power series $G(x)$, $\widetilde{G}(x)$, $\overline{G}(x)$, $G(x;q)$, $G\langle{x;q}\rangle$, ${Z}_{G}(x_1,x_2,x_3,\ldots)$, ${\Gamma }_{G}(x_1,x_2,x_3,\ldots)$, for $G = F_{w^{(\alpha)}}$, in terms of $F_w$. Special instances of our formulas include the exponential formula, ${F}_{{w}^{(\alpha )}}(x)=\exp(\alpha F_{w}(x))=({F}_{w}(x){)}^{\alpha }$, cyclotomic identities, and their $q$-analogues. The virtual weighted species, $\Lambda ^{(\alpha)}$, is, in fact, a new combinatorial lifting of the function ${(1+x)}^{\alpha }$.

[1]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[2]  Gilbert Labelle,et al.  Sur la symétrie et l'asymétrie des structures combinatoires , 1993, Theor. Comput. Sci..

[3]  D. Foata,et al.  Polynômes de Jacobi, interprétation combinatoire et fonction génératrice , 1983 .

[4]  Dominique Foata,et al.  Modèles Combinatoires pour les Polynômes de Meixner , 1983, Eur. J. Comb..

[5]  Yeong-Nan Yeh,et al.  The relation between burnside rings and combinatorial species , 1989, J. Comb. Theory, Ser. A.

[6]  Dominique Foata,et al.  A Combinatorial Proof of the Mehler Formula , 1978, J. Comb. Theory A.

[7]  J. Howie COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .

[8]  N. Sloane A Handbook Of Integer Sequences , 1973 .

[9]  François Bergeron A combinatoric of plethysm , 1987 .

[10]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[11]  Hélène Décoste Indicating series and q -series , 1993 .

[12]  Gilbert Labelle,et al.  On asymmetric structures , 1992, Discret. Math..

[13]  Ivan Constantineau Self-similarity in the combinatorics of orthogonal polynomials , 1993 .

[14]  François Bergeron,et al.  Une combinatoire du pléthysme , 1987, J. Comb. Theory, Ser. A.

[15]  Gilbert Labelle,et al.  Counting Asymmetric Enriched Trees , 1992, J. Symb. Comput..

[16]  Gilbert Labelle,et al.  Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .

[17]  A. Joyal Foncteurs analytiques et espèces de structures , 1986 .

[18]  Andreas W. M. Dress,et al.  On the number of solutions of certain linear diophantine equations , 1990 .

[19]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[20]  D. Foata La série génératrice exponentielle dans les problèmes d'énumération , 1974 .

[21]  Gilbert Labelle,et al.  Some new computational methods in the theory of species , 1986 .

[22]  Ivan Constantineau Auto-similarité dans la combinatoire des polynômes orthogonaux , 1993, Theor. Comput. Sci..

[23]  Christophe Reutenauer Mots circulaires et polyn^omes irr?eductibles , 1988 .

[24]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[25]  Andreas Dress,et al.  The Burnside ring of the infinite cyclic group and its relations to the necklace algebra, λ-rings, and the universal ring of Witt vectors , 1989 .

[26]  G. Rota,et al.  Witt vectors and the algebra of necklaces , 1983 .

[27]  Hélène Décoste Séries indicatrices et q-séries , 1993, Theor. Comput. Sci..

[28]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[29]  Yeong-Nan Yeh The calculus of virtual species and K-species , 1986 .

[30]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[31]  Frank Harary,et al.  Graphical enumeration , 1973 .