An Autocompletion Mechanism for Enriched Keyword Queries to RDF Data Sources

This article introduces a novel keyword query paradigm for end users in order to retrieve precise answers from semantic data sources. Contrary to existing approaches, connectors corresponding to linking words or verbal structures from natural languages are used inside queries to specify the meaning of each keyword, thus leading to a complete and explicit definition of the intent of the search. An example of such a query is name of person at the head of company and author of article about "business intelligence". In order to help users formulate such connected keywords queries and to translate them into SPARQL, an interactive mechanism based on autocompletion has been developed, which is presented in this article.

[1]  Ioana Manolescu,et al.  Integrating Keyword Search into XML Query Processing , 2000, BDA.

[2]  Feng Shao,et al.  XRANK: ranked keyword search over XML documents , 2003, SIGMOD '03.

[3]  Alon Y. Halevy,et al.  MiniCon: A scalable algorithm for answering queries using views , 2000, The VLDB Journal.

[4]  Steffen Staab,et al.  Managing Knowledge in a World of Networks , 2008 .

[5]  Enrico Motta,et al.  SemSearch: A Search Engine for the Semantic Web , 2006, EKAW.

[6]  Wolfgang Nejdl,et al.  From keywords to semantic queries - Incremental query construction on the semantic web , 2009, J. Web Semant..

[7]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[8]  Gio Wiederhold,et al.  Mediators in the architecture of future information systems , 1992, Computer.

[9]  Luis Gravano,et al.  Efficient IR-Style Keyword Search over Relational Databases , 2003, VLDB.

[10]  Clement T. Yu,et al.  Effective keyword search in relational databases , 2006, SIGMOD Conference.

[11]  Sonia Bergamaschi,et al.  Keyword search over relational databases: a metadata approach , 2011, SIGMOD '11.

[12]  Guoliang Li,et al.  Interactive SQL query suggestion: Making databases user-friendly , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[13]  Jeffrey Xu Yu,et al.  Keyword search in databases: the power of RDBMS , 2009, SIGMOD Conference.

[14]  Beng Chin Ooi,et al.  EASE: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data , 2008, SIGMOD Conference.

[15]  Georgia Koutrika,et al.  Précis: from unstructured keywords as queries to structured databases as answers , 2007, The VLDB Journal.

[16]  Zhengxin Chen,et al.  STRUCT: incorporating contextual information for English query search on relational databases , 2012, KEYS '12.

[17]  Chong Wang,et al.  SPARK: Adapting Keyword Query to Semantic Search , 2007, ISWC/ASWC.

[18]  Ihab F. Ilyas,et al.  Expressive and flexible access to web-extracted data: a keyword-based structured query language , 2010, SIGMOD Conference.