Implementation of standard testbeds for numerical relativity
暂无分享,去创建一个
S. Husa | Y. Zlochower | S. Husa | B. Szilágyi | E. Schnetter | I. Hinder | J. Winicour | D. Pollney | C. Lechner | M. Babiuc | E. Schnetter | N. Dorband | D. Alic | I. Hinder | B. Szilagyi | Y. Zlochower | J. Winicour | M. C. Babiuc | D. Alic | C. Lechner | E. Schnetter | N. Dorband | D. Pollney | Christiane Lechner
[1] J. Pullin. Editorial note to R. Arnowitt, S. Deser, C. W. Misner The dynamics of general relativity , 2008 .
[2] Convergence and stability in numerical relativity , 2002, gr-qc/0207018.
[3] B. Szilágyi,et al. Harmonic Initial-Boundary Evolution in General Relativity , 2006, gr-qc/0601039.
[4] Hans Ringstrom,et al. On a wave map equation arising in general relativity , 2003, gr-qc/0303062.
[5] Lawrence E. Kidder,et al. Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.
[6] Jacques E. Romain,et al. Gravitation: An Introduction to Current Research , 1963 .
[7] J. York,et al. Kinematics and dynamics of general relativity , 1979 .
[8] S. Frittelli,et al. Note on the propagation of the constraints in standard (3+1) general relativity , 1997 .
[9] S. Husa,et al. Hyperboloidal data and evolution , 2005, gr-qc/0512033.
[10] H. Kreiss,et al. Modeling the black hole excision problem , 2004, gr-qc/0412101.
[11] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.
[12] Gabrielle Allen,et al. Towards standard testbeds for numerical relativity , 2003, gr-qc/0305023.
[13] L. M. González-Romero,et al. Current Trends in Relativistic Astrophysics , 2003 .
[14] C. Gundlach,et al. Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.
[15] H. Kreiss,et al. Finite difference schemes for second order systems describing black holes , 2006, gr-qc/0604010.
[16] B. Szilágyi,et al. Testing numerical evolution with the shifted gauge wave , 2005, gr-qc/0511154.
[17] Testing the accuracy and stability of spectral methods in numerical relativity , 2006, gr-qc/0609047.
[18] Asymptotic Behavior of a Class of Expanding Gowdy Spacetimes , 2002, gr-qc/0207035.
[19] Heinz-Otto Kreiss,et al. Methods for the approximate solution of time dependent problems , 1973 .
[20] Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions , 2006, gr-qc/0604035.
[21] Ian Hinder,et al. Numerical stability for finite difference approximations of Einstein's equations , 2005, J. Comput. Phys..
[22] Christiane Lechner,et al. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations , 2006, Comput. Phys. Commun..
[23] M. Campanelli,et al. Accurate black hole evolutions by fourth-order numerical relativity , 2005 .
[24] Oscar Reula,et al. Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.
[25] R. Gowdy. Gravitational waves in closed universes , 1971 .
[26] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[27] Susan G. Hahn,et al. The two-body problem in geometrodynamics , 1964 .
[28] Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations , 2004, gr-qc/0403019.
[29] Frans Pretorius,et al. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[30] W. M. Lioen,et al. Test set for IVP solvers , 1996 .
[31] B. Strand. Summation by parts for finite difference approximations for d/dx , 1994 .
[32] Keith Watt,et al. Stable 3-level leapfrog integration in numerical relativity , 1998, gr-qc/9801110.
[33] Some mathematical problems in numerical relativity , 2006 .
[34] R. Arnowitt,et al. Republication of: The dynamics of general relativity , 2004 .
[35] Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.
[36] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[37] S. Husa,et al. Kranc : a Mathematica application to generate numerical codes for tensorial evolution equations , 2004 .
[38] E. Schnetter,et al. Excision without excision , 2007, 0707.3101.
[39] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[40] O. Rinne. Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations , 2006, gr-qc/0606053.
[41] Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.
[42] Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.
[43] J. Frauendiener,et al. Algebraic stability analysis of constraint propagation , 2004, gr-qc/0410100.
[44] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[45] E. Seidel,et al. Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.
[46] 丹生 慶四郎,et al. R. Courant and K. O. Friedrichs: Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1976, 464ページ, 23.5×16cm, 7,200円. , 1978 .
[47] O. Sarbach,et al. On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2004, gr-qc/0406003.
[48] H. Friedrich,et al. The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .
[49] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[50] D. Post,et al. Computational Science Demands a New Paradigm , 2005 .
[51] Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations , 2002, gr-qc/0205086.
[52] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[53] C. Gundlach,et al. Hyperbolicity of second order in space systems of evolution equations , 2005, gr-qc/0506037.