Implementation of standard testbeds for numerical relativity

We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.

[1]  J. Pullin Editorial note to R. Arnowitt, S. Deser, C. W. Misner The dynamics of general relativity , 2008 .

[2]  Convergence and stability in numerical relativity , 2002, gr-qc/0207018.

[3]  B. Szilágyi,et al.  Harmonic Initial-Boundary Evolution in General Relativity , 2006, gr-qc/0601039.

[4]  Hans Ringstrom,et al.  On a wave map equation arising in general relativity , 2003, gr-qc/0303062.

[5]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[6]  Jacques E. Romain,et al.  Gravitation: An Introduction to Current Research , 1963 .

[7]  J. York,et al.  Kinematics and dynamics of general relativity , 1979 .

[8]  S. Frittelli,et al.  Note on the propagation of the constraints in standard (3+1) general relativity , 1997 .

[9]  S. Husa,et al.  Hyperboloidal data and evolution , 2005, gr-qc/0512033.

[10]  H. Kreiss,et al.  Modeling the black hole excision problem , 2004, gr-qc/0412101.

[11]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[12]  Gabrielle Allen,et al.  Towards standard testbeds for numerical relativity , 2003, gr-qc/0305023.

[13]  L. M. González-Romero,et al.  Current Trends in Relativistic Astrophysics , 2003 .

[14]  C. Gundlach,et al.  Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.

[15]  H. Kreiss,et al.  Finite difference schemes for second order systems describing black holes , 2006, gr-qc/0604010.

[16]  B. Szilágyi,et al.  Testing numerical evolution with the shifted gauge wave , 2005, gr-qc/0511154.

[17]  Testing the accuracy and stability of spectral methods in numerical relativity , 2006, gr-qc/0609047.

[18]  Asymptotic Behavior of a Class of Expanding Gowdy Spacetimes , 2002, gr-qc/0207035.

[19]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[20]  Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions , 2006, gr-qc/0604035.

[21]  Ian Hinder,et al.  Numerical stability for finite difference approximations of Einstein's equations , 2005, J. Comput. Phys..

[22]  Christiane Lechner,et al.  Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations , 2006, Comput. Phys. Commun..

[23]  M. Campanelli,et al.  Accurate black hole evolutions by fourth-order numerical relativity , 2005 .

[24]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[25]  R. Gowdy Gravitational waves in closed universes , 1971 .

[26]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[27]  Susan G. Hahn,et al.  The two-body problem in geometrodynamics , 1964 .

[28]  Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations , 2004, gr-qc/0403019.

[29]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[30]  W. M. Lioen,et al.  Test set for IVP solvers , 1996 .

[31]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[32]  Keith Watt,et al.  Stable 3-level leapfrog integration in numerical relativity , 1998, gr-qc/9801110.

[33]  Some mathematical problems in numerical relativity , 2006 .

[34]  R. Arnowitt,et al.  Republication of: The dynamics of general relativity , 2004 .

[35]  Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[36]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[37]  S. Husa,et al.  Kranc : a Mathematica application to generate numerical codes for tensorial evolution equations , 2004 .

[38]  E. Schnetter,et al.  Excision without excision , 2007, 0707.3101.

[39]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[40]  O. Rinne Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations , 2006, gr-qc/0606053.

[41]  Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.

[42]  Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.

[43]  J. Frauendiener,et al.  Algebraic stability analysis of constraint propagation , 2004, gr-qc/0410100.

[44]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[45]  E. Seidel,et al.  Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.

[46]  丹生 慶四郎,et al.  R. Courant and K. O. Friedrichs: Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1976, 464ページ, 23.5×16cm, 7,200円. , 1978 .

[47]  O. Sarbach,et al.  On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2004, gr-qc/0406003.

[48]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[49]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[50]  D. Post,et al.  Computational Science Demands a New Paradigm , 2005 .

[51]  Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations , 2002, gr-qc/0205086.

[52]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[53]  C. Gundlach,et al.  Hyperbolicity of second order in space systems of evolution equations , 2005, gr-qc/0506037.