On a class of degenerate parabolic equations of Kolmogorov type

We adapt the Levi's parametrix method to prove existence, estimates and qualitative properties of a global fundamental solution to ultraparabolic partial differential equations of Kolmogorov type. Existence and uniqueness results for the Cauchy problem are also proved.

[1]  R. Bhar,et al.  Transformation of Heath-Jarrow-Morton Models to Markovian Systems , 1995 .

[2]  C. Los OPTION PRICING I , 2000 .

[3]  Nina Uraltseva,et al.  Nonlinear Problems in Mathematical Physics and Related Topics II , 2002 .

[4]  L. Rogers,et al.  Complete Models with Stochastic Volatility , 1998 .

[5]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[6]  A. Kolmogoroff,et al.  Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .

[7]  G. Barles,et al.  Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .

[8]  J. Brion Topics in carbon 13 NMR spectroscopy, volume 3. Edited by George C. Levy. A Wiley Interscience Publication (John Wiley and Sons, New York. Chichester. Brisbane. Toronto). , 1980 .

[9]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[10]  S. Polidoro,et al.  Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance , 2002 .

[11]  Andrea Pascucci,et al.  On the Cauchy Problem for a Nonlinear Kolmogorov Equation , 2003, SIAM J. Math. Anal..

[12]  Entropy solutions for diffusion-convection equations with partial diffusivity , 1994 .

[13]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[14]  Emilio Barucci,et al.  Asset pricing with a forward-backward stochastic differential utility , 2001 .

[15]  Emilio Barucci,et al.  Some Results on Partial Differential Equations and Asian Options , 2001 .

[16]  Hölder regularity for a Kolmogorov equation , 2002 .

[17]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[18]  PDE Models for Pricing Stocks and Options With Memory Feedback , 1995 .

[19]  S. Polidoro Uniqueness and representation theorems for solutions of Kolmogorov-Fokker-Planck equations , 1995 .

[20]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[21]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[22]  Andrea Pascucci,et al.  Analysis of an uncertain volatility model , 2006, Adv. Decis. Sci..

[23]  A. Pascucci,et al.  Regularity properties of viscosity solutions of a non-Hörmander degenerate equation☆ , 2001 .

[24]  A. Pascucci,et al.  On the complete model with stochastic volatility by Hobson and Rogers , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Peter H. Ritchken,et al.  VOLATILITY STRUCTURES OF FORWARD RATES AND THE DYNAMICS OF THE TERM STRUCTURE1 , 1995 .

[26]  J. Barraquand,et al.  PRICING OF AMERICAN PATH‐DEPENDENT CONTINGENT CLAIMS , 1996 .

[27]  P. Koehl,et al.  A P.D.E. Approach to Asian Options: Analytical and Numerical Evidence , 1997 .

[28]  S. Polidoro On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type , 1995 .

[29]  Pricing Derivative Securities , 2000 .

[30]  S. Polidoro,et al.  On a class of hypoelliptic evolution operators , 1994 .

[31]  A. Pascucci,et al.  On the viscosity solutions of a stochastic differential utility problem , 2002 .

[32]  S. Polidoro A Global Lower Bound for the Fundamental Solution of Kolmogorov-Fokker-Planck Equations , 1997 .

[33]  W. Steubing,et al.  Zur Theorie der Brownschen Bewegung , 1908 .

[34]  Maria Weber The fundamental solution of a degenerate partial differential equation of parabolic type , 1951 .

[35]  I. Sonin On a Class of Degenerate Diffusion Processes , 1967 .