ReviewNanosensors for trace explosive detection

Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

[1]  E. Zellers,et al.  Limits of recognition for simple vapor mixtures determined with a microsensor array. , 2004, Analytical chemistry.

[2]  Qin Zhou,et al.  Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity , 1995 .

[3]  Joseph Wang,et al.  On-line electrochemical monitoring of (TNT) 2,4,6-trinitrotoluene in natural waters , 2003 .

[4]  B. Rogers,et al.  Explosives: A microsensor for trinitrotoluene vapour , 2003, Nature.

[5]  R Chung,et al.  Rational materials design of sorbent coatings for explosives: applications with chemical sensors. , 2001, Talanta.

[6]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[7]  D. Rounbehler,et al.  Vapor pressure of explosives , 1986 .

[8]  Panos G. Datskos,et al.  Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices , 2001 .

[9]  E. Zellers,et al.  Adaptation and Evaluation of a Personal Electronic Nose for Selective Multivapor Analysis , 2004, Journal of occupational and environmental hygiene.

[10]  G. Shi,et al.  A water-soluble cationic oligopyrene derivative : Spectroscopic studies and sensing applications , 2009 .

[11]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[12]  Ming Su,et al.  Miniaturized chemical multiplexed sensor array. , 2003, Journal of the American Chemical Society.

[13]  D. Moore Instrumentation for trace detection of high explosives , 2004 .

[14]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[15]  J. Steinfeld,et al.  Explosives detection: a challenge for physical chemistry. , 1998, Annual review of physical chemistry.

[16]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[17]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[18]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[19]  M. J. Rost,et al.  Pushing the limits of SPM , 2005 .

[20]  T. Thundat,et al.  Detection of trinitrotoluene via deflagration on a microcantilever , 2004 .

[21]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[22]  Shengyang Tao,et al.  PAPER www.rsc.org/materials | Journal of Materials Chemistry Fluorescent nanofibrous membranes for trace detection of TNT vapor , 2006 .

[23]  R. A. McGill,et al.  A sensitive, handheld vapor sensor based on microcantilevers , 2004 .

[24]  Matthew J Linman,et al.  Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol-gel sensing films. , 2007, Analytica chimica acta.

[25]  Suman Singh,et al.  Sensors--an effective approach for the detection of explosives. , 2007, Journal of hazardous materials.

[26]  A Fainberg,et al.  Explosives Detection for Aviation Security , 1992, Science.

[27]  L.A. Pinnaduwage,et al.  Moore's law in homeland defense: an integrated sensor platform based on silicon microcantilevers , 2005, IEEE Sensors Journal.

[28]  Regina E. Dugan,et al.  Visual Detection of Trace Nitroaromatic Explosive Residue Using Photoluminescent Metallole‐Containing Polymers , 2007, Journal of forensic sciences.

[29]  Anja Boisen,et al.  Modular design of AFM probe with sputtered silicon tip , 2001 .

[30]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[31]  Ronald L. Woodfin,et al.  Trace chemical sensing of explosives , 2007 .

[32]  William C. Trogler,et al.  Polymer sensors for nitroaromatic explosives detection , 2006 .

[33]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[34]  Debjyoti Banerjee,et al.  Detection of explosives using heated microcantilever sensors , 2006, SPIE Defense + Commercial Sensing.

[35]  Nongjian Tao,et al.  Chemical sensor based on microfabricated wristwatch tuning forks. , 2005, Analytical chemistry.

[36]  J. Thaysen,et al.  Environmental sensors based on micromachined cantilevers with integrated read-out , 2000, Ultramicroscopy.

[37]  Kenshi Hayashi,et al.  Detection of aromatic nitro compounds with electrode polarization controlling sensor , 2005 .

[38]  Songlin Feng,et al.  Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression , 2007 .

[39]  Peter Kolla,et al.  The Application of Analytical Methods to the Detection of Hidden Explosives and Explosive Devices , 1997 .

[40]  Thomas Thundat,et al.  Thermal and ambient-induced deflections of scanning force microscope cantilevers , 1994 .

[41]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[42]  T. Thundat,et al.  Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers , 2003 .

[43]  T. Swager,et al.  Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials , 1998 .

[44]  Panos G. Datskos,et al.  Photomechanical chemical microsensors , 2001 .

[45]  Michael Sepaniak,et al.  Independent component analysis of nanomechanical responses of cantilever arrays. , 2007, Analytica chimica acta.

[46]  Zulfiqur Ali,et al.  Chemical Sensors for Electronic Nose Systems , 2005 .

[47]  Nicole Grobert,et al.  Carbon nanotubes – becoming clean , 2007 .

[48]  L. J. Myers,et al.  The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. , 2001, Talanta.

[49]  Qin Lu,et al.  Sensitive capillary electrophoresis microchip determination of trinitroaromatic explosives in nonaqueous electrolyte following solid phase extraction , 2002 .

[50]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[51]  Z. Wang,et al.  Nanowires and nanobelts : materials, properties, and devices , 2006 .

[52]  Peiming Zhang,et al.  Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. , 2006, Small.

[53]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[54]  R. A. McGill,et al.  Micropreconcentrator for Enhanced Trace Detection of Explosives and Chemical Agents , 2006, IEEE Sensors Journal.

[55]  Panos G. Datskos,et al.  Detection of Explosive Compounds with the Use of Microcantilevers with Nanoporous Coatings , 2003 .

[56]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[57]  S F Hallowell,et al.  Screening people for illicit substances: a survey of current portal technology. , 2001, Talanta.

[58]  Richard J. Colton,et al.  Making the World a Safer Place , 2003, Science.

[59]  James K. Gimzewski,et al.  Observation of a chemical reaction using a micromechanical sensor , 1994 .

[60]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[61]  Jincai Zhao,et al.  Detection of explosives with a fluorescent nanofibril film. , 2007, Journal of the American Chemical Society.

[62]  Ronald P. Manginell,et al.  Microfabricated silicon gas chromatographic microchannels: fabrication and performance , 1998, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[63]  D. Walt Electronic Noses: Wake Up and Smell the Coffee , 2005 .

[64]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[65]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[66]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[67]  Chia-Jung Lu,et al.  Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. , 2003, Analytical chemistry.

[68]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[69]  Daming Gao,et al.  Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. , 2006, Analytical chemistry.

[70]  Michael J Sailor,et al.  Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. , 2003, Journal of the American Chemical Society.

[71]  M. Bowyer,et al.  Molecularly imprinted polymers (MIPs): sensing, an explosive new opportunity? , 2007, Organic & biomolecular chemistry.

[72]  P. A. Pella,et al.  Measurement of the vapor pressures of tnt, 2,4-dnt, 2,6-dnt, and egdn , 1977 .