Influence of the number of FSP passes on the strength-ductility synergy of cold-rolled spark plasma sintered pure aluminum

[1]  Abhishek Sharma,et al.  Bending induced mechanical exfoliation of graphene interlayers in a through thickness Al-GNP functionally graded composite fabricated via novel single-step FSP approach , 2021, Carbon.

[2]  M. Alipour,et al.  Influence of hot rolling on friction and wear behaviour of Al6061-ZrB2 in-situ metal matrix composites , 2021 .

[3]  Abhishek Sharma,et al.  Influence of aluminium-rich intermetallics on microstructure evolution and mechanical properties of friction stir alloyed Al Fe alloy system , 2021 .

[4]  B. Xiao,et al.  Grain size effect on tensile deformation behaviors of pure aluminum , 2021, Materials Science and Engineering: A.

[5]  Abhishek Sharma,et al.  Performance evaluation of Al6061-graphene nanocomposites surface engineered by a novel multiple microchannel reinforcement approach in friction stir processing , 2021, Carbon Letters.

[6]  Abhishek Sharma,et al.  A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing , 2021, Carbon Letters.

[7]  P. Vundavilli,et al.  Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties , 2020 .

[8]  Abhishek Sharma,et al.  Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061- CNT nanocomposite fabricated via FSP , 2020 .

[9]  W. Xiong,et al.  Microstructure and mechanical properties of graphene nanoplatelets reinforced Al matrix composites fabricated by spark plasma sintering , 2020 .

[10]  M. R. Predtechensky,et al.  Effect of single wall carbon nanotubes on strength properties of aluminum composite produced by spark plasma sintering and extrusion , 2020 .

[11]  H. Chattopadhyay,et al.  A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites , 2020 .

[12]  Chuansong Wu,et al.  Effect of ultrasonic vibration on dynamic recrystallization in friction stir welding , 2020 .

[13]  S. Ding,et al.  Machinablility of titanium matrix composites (TMC) reinforced with multi-walled carbon nanotubes , 2020 .

[14]  D. Juul Jensen,et al.  Dislocation density in fine grain-size spark-plasma sintered aluminum measured using high brightness synchrotron radiation , 2020 .

[15]  Xinfang Zhang,et al.  Ultrafast fabrication of high-density Al–12Si compacts with gradient structure by electro-discharge sintering , 2020, Journal of Manufacturing Processes.

[16]  D. Karunakar,et al.  Characterization of mechanical properties and microstructures of spark plasma sintered and cryo-rolled AA2024−Y composites , 2020, Transactions of Nonferrous Metals Society of China.

[17]  A. Eivani,et al.  Through-thickness inhomogeneity in microstructure and tensile properties and tribological performance of friction stir processed AA1050-Al2O3 nanocomposite , 2019, Composites Part B: Engineering.

[18]  A. Gerlich,et al.  Solid-state joining of powder metallurgy Al-Al2O3 nanocomposites via friction-stir welding: Effects of powder particle size on the weldability, microstructure, and mechanical property , 2019, Materials Science and Engineering: A.

[19]  B. Xiao,et al.  High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing , 2018, Carbon.

[20]  B. Sahoo,et al.  Influence of process parameters and temperature on the solid state fabrication of multilayered graphene-aluminium surface nanocomposites , 2018, Journal of Manufacturing Processes.

[21]  M. Shamanian,et al.  Electron backscattered diffraction analysis of friction stir processed nanocomposites produced via spark plasma sintering , 2018, Journal of microscopy.

[22]  P. Cavaliere,et al.  Hot rolling of spark-plasma-sintered pure aluminium , 2018, Powder Metallurgy.

[23]  M. Shamanian,et al.  Friction stir processing of spark plasma sintered aluminum matrix composites with bimodal micro- and nano-sized reinforcing Al2O3 particles , 2018 .

[24]  A. Gerlich,et al.  Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening , 2017 .

[25]  M. Starink Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals , 2017 .

[26]  M. Shamanian,et al.  Microstructural and mechanical behavior of bimodal reinforced Al-based composites produced by spark plasma sintering and FSP , 2017, The International Journal of Advanced Manufacturing Technology.

[27]  I. Lahiri,et al.  Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering , 2017 .

[28]  Abhishek Sharma,et al.  Surface modification of aluminium by graphene impregnation , 2017 .

[29]  A. Kokabi,et al.  Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: Microstructure and mechanical properties , 2016 .

[30]  D. Keum,et al.  Strengthening mechanisms in carbon nanotube-reinforced aluminum composites , 2015 .

[31]  Weiqi Wang,et al.  Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing , 2014 .

[32]  M. Brochu,et al.  Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering , 2014 .

[33]  A. Agarwal,et al.  Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests , 2014 .

[34]  A. Kokabi,et al.  Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties , 2013 .

[35]  A. Gerlich,et al.  Friction stir processing of Al/SiC composites fabricated by powder metallurgy , 2013 .

[36]  W. Wang,et al.  Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling , 2013 .

[37]  N. Hansen,et al.  Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering , 2013 .

[38]  W. Ding,et al.  Microstructures and mechanical properties of friction stir processed Mg–2.0Nd–0.3Zn–1.0Zr magnesium alloy , 2013 .

[39]  E. El-Danaf,et al.  The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082 , 2012 .

[40]  W. Wang,et al.  Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing , 2012 .

[41]  A. Kawasaki,et al.  Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures , 2010 .

[42]  A. Molinari,et al.  Spark plasma sintering of pure aluminium powder: Mechanical properties and fracture analysis , 2007 .

[43]  Y. Morisada,et al.  MWCNTs/AZ31 surface composites fabricated by friction stir processing , 2006 .

[44]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[45]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[46]  Surjya K. Pal,et al.  Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing , 2019, Journal of Manufacturing Processes.