A qualitative model for aggregation and diffusion of $$\beta $$-amyloid in Alzheimer’s disease

In this paper we present a mathematical model for the aggregation and diffusion of A$$\beta $$ amyloid in the brain affected by Alzheimer’s disease, at the early stage of the disease. The model is based on a classical discrete Smoluchowski aggregation equation modified to take diffusion into account. We also describe a numerical scheme and discuss the results of the simulations in the light of the recent biomedical literature.

[1]  T. L. Hill Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates. , 1983, Biophysical journal.

[2]  D. Holtzman,et al.  Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease , 2008, Nature.

[3]  Kenjiro Ono,et al.  Structure–neurotoxicity relationships of amyloid β-protein oligomers , 2009, Proceedings of the National Academy of Sciences.

[4]  Francis Filbet,et al.  Numerical Simulation of the Smoluchowski Coagulation Equation , 2004, SIAM J. Sci. Comput..

[5]  Stéphane Mischler,et al.  Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions , 2003 .

[6]  Anne Corbett,et al.  Alzheimer's disease , 2011, The Lancet.

[7]  H. Lashuel,et al.  The Ratio of Monomeric to Aggregated Forms of Aβ40 and Aβ42 Is an Important Determinant of Amyloid-β Aggregation, Fibrillogenesis, and Toxicity* , 2008, Journal of Biological Chemistry.

[8]  Y. Ishii,et al.  Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid , 2007, Nature Structural &Molecular Biology.

[9]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[10]  Tuomas P. J. Knowles,et al.  An Analytical Solution to the Kinetics of Breakable Filament Assembly , 2009, Science.

[11]  Francis Filbet,et al.  Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation , 2004 .

[12]  B Urbanc,et al.  Dynamics of plaque formation in Alzheimer's disease. , 1999, Biophysical journal.

[13]  L. Edelstein-Keshet,et al.  Exploring the formation of Alzheimer's disease senile plaques in silico. , 2002, Journal of theoretical biology.

[14]  Philippe Laurençot,et al.  Global existence for the discrete diffusive coagulation-fragmentation equations in $L^1$ , 2002 .

[15]  D. Selkoe,et al.  Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide , 2007, Nature Reviews Molecular Cell Biology.

[16]  M. Mattson Pathways towards and away from Alzheimer's disease , 2004, Nature.

[17]  Regina M. Murphy,et al.  Probing the Kinetics of β-Amyloid Self-Association , 2000 .

[18]  D. Selkoe,et al.  Aβ Oligomers – a decade of discovery , 2007, Journal of neurochemistry.

[19]  M. Meyer-Lühmann Experimental approaches to study cerebral amyloidosis in a transgenic mouse model of Alzheimer's disease , 2004 .

[20]  Herbert Amann,et al.  On a quasilinear coagulation-fragmentation model with diffusion , 2001 .

[21]  Herbert Amann,et al.  Coagulation-Fragmentation Processes , 2000 .

[22]  M McNamara,et al.  Aggregation and disaggregation of senile plaques in Alzheimer disease. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. Goodhill Diffusion in Axon Guidance , 1997, The European journal of neuroscience.

[24]  Regina M. Murphy,et al.  Kinetics of aggregation of synthetic β-amyloid peptide , 1992 .

[25]  C. Schaller,et al.  MATHEMATICAL MODELLING OF GLIOBLASTOMA TUMOUR DEVELOPMENT: A REVIEW , 2005 .

[26]  Francis Filbet,et al.  Convergence of a finite volume scheme for coagulation-fragmentation equations , 2007, Math. Comput..

[27]  Jee Hoon Roh,et al.  Neuronal activity regulates the regional vulnerability to amyloid-β deposition , 2011, Nature Neuroscience.

[28]  S. Radford,et al.  Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly , 2008, Proceedings of the National Academy of Sciences.

[29]  B. Straughan,et al.  Decay bounds in a model for aggregation of microglia: application to Alzheimer's disease senile plaques , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[31]  Christoph Walker,et al.  Local and global strong solutions to continuous coagulation–fragmentation equations with diffusion , 2005 .

[32]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[33]  C. Nicholson,et al.  Extracellular space structure revealed by diffusion analysis , 1998, Trends in Neurosciences.

[34]  Dariusz Wrzosek,et al.  Existence of solutions for the discrete coagulation-fragmentation model with diffusion , 1997 .