Limit-cycle analysis of dynamic fuzzy control systems

The main purpose of this study is to predict limit cycles of a dynamic fuzzy control system by combining a stability equation, describing function and parameter plane. The stability of a linearized dynamic fuzzy control system is then analyzed using stability equations and the parameter plane method, with the assistance of a describing function method. This procedure identifies the amplitude and frequency of limit cycles that are clearly formed by the dynamic fuzzy controller in the parameter plane. Moreover, the suppression of the limit cycle by adjusting control parameters is proposed. Continuous and sampled-data systems are addressed, and the proposed approach can easily be extended to a fuzzy control system with multiple nonlinearities. Simulations are performed to demonstrate the effectiveness of the proposed scheme.

[1]  A. Tesi,et al.  A frequency approach for analyzing and controlling chaos in nonlinear circuits , 1993 .

[2]  Stefan Preitl,et al.  Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity , 2013, Inf. Sci..

[3]  A. Tesi,et al.  Existence and characterization of limit cycles in nearly symmetric neural networks , 2002 .

[4]  Julius T. Tou,et al.  Digital and sampled-data control systems , 1963 .

[5]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[6]  Héctor Pomares,et al.  Self-evolving parameter-free Rule-based Controller:SPARC , 2012 .

[7]  F. H. Nordin,et al.  Fuzzy bang-bang relay controller for satellite attitude control system , 2010, Fuzzy Sets Syst..

[8]  D. D. Siljak Analysis and Synthesis of Feedback Control Systems in the Parameter Plane III-Nonlinear Systems , 1964, IEEE Transactions on Applications and Industry.

[9]  Karl Johan Åström,et al.  Friction generated limit cycles , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[10]  Francisco Gordillo,et al.  Determining limit cycles in fuzzy control systems , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[11]  G. Thaler,et al.  Control system analysis and design using a parameter space method , 1966 .

[12]  Héctor Pomares,et al.  Self-evolving parameter-free Rule-based Controller , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[13]  Yeong-Hwa Chang,et al.  Simplified type-2 fuzzy sliding controller for wing rock system , 2012, Fuzzy Sets Syst..

[14]  Anna Soffía Hauksdóttir,et al.  On the Use of Robust Design Methods in Vehicle Longitudinal Controller Design , 1993 .

[15]  Guanrong Chen,et al.  Static output-feedback fuzzy controller for Chen's chaotic system with uncertainties , 2003, Inf. Sci..

[16]  Chi-Cheng Cheng,et al.  On the limit cycle of the underwater vehicle control system , 1998, Proceedings of 1998 International Symposium on Underwater Technology.

[17]  Xing Jun,et al.  Using describing function to analyze wriggling phenomenon of fuzzy control systems , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[18]  A. Tesi,et al.  On limit cycles in feedback polynomial systems , 1988 .

[19]  Chen-Sheng Ting,et al.  Stability analysis and design of Takagi-Sugeno fuzzy systems , 2006, Inf. Sci..

[20]  Peng Shi,et al.  Robust Hinfinity output feedback control design for fuzzy dynamic systems with quadratic D stability constraints: An LMI approach , 2006, Inf. Sci..

[21]  Yun-Chung Chu,et al.  Robust control of combustion oscillations , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[22]  Dragoslav D. Šiljak,et al.  Nonlinear systems;: The parameter analysis and design , 1968 .

[23]  J. Ackermann,et al.  Actuator rate limits in robust car steering control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[24]  Wai-Kai Chen,et al.  Nonlinear Control Systems: Some Practical Methods , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Kazuo Tanaka,et al.  Fuzzy stability criterion of a class of nonlinear systems , 1993, Inf. Sci..

[26]  Guanrong Chen,et al.  On limit cycle approximations in the van der Pol oscillator , 2005 .

[27]  Jau-Woei Perng Describing function analysis of uncertain fuzzy vehicle control systems , 2011, Neural Computing and Applications.

[28]  C. S. Cox,et al.  Limit Cycle Prediction Conditions for a Class of Hydraulic Control System , 1986 .

[29]  John Y. Cheung,et al.  Steady-state analysis of a three-term fuzzy controller , 1993, IEEE Trans. Syst. Man Cybern..

[30]  Jorge L. Moiola,et al.  On period doubling bifurcations of cycles and the harmonic balance method , 2006 .

[31]  Kazuo Tanaka,et al.  Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: An LMI approach , 2000, Inf. Sci..

[32]  Euntai Kim,et al.  Limit-cycle prediction of a fuzzy control system based on describing function method , 2000, IEEE Trans. Fuzzy Syst..

[33]  A. Shenton Parameter space design of PID limit cycle controllers , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[34]  Che-Hsu Chang,et al.  Analysis of gain margins and phase margins of a nonlinear reactor control system , 1994 .

[35]  Jorge L. Moiola,et al.  Hopf bifurcation for maps: a frequency-domain approach , 2002 .