K-Triviality of Closed Sets and Continuous Functions

We investigate the notion of K-triviality for closed sets and continuous functions in 2ℕ. For every K-trivial degree d, there exists a closed set of degree d and a continuous function of degree d. Every K-trivial closed set contains a K-trivial real. There exists a K-trivial Π10 class with no computable elements. A closed set is K-trivial if and only if it is the set of zeroes of some K-trivial continuous function. We give a density result for the Medvedev degrees of K-trivial Π10 sets. If W ≤TA′, then W can compute a path through every A′-decidable random closed set if and only if W ≡TA′.

[1]  Antonín Kucera,et al.  Low upper bounds of ideals , 2007, The Journal of Symbolic Logic.

[2]  Kempachiro Ohashi A stronger form of a theorem of Friedberg , 1964, Notre Dame J. Formal Log..

[3]  Rodney G. Downey,et al.  FIVE LECTURES ON ALGORITHMIC RANDOMNESS , 2008 .

[4]  Douglas Cenzer,et al.  Density of the Medvedev lattice of Π01 classes , 2003, Arch. Math. Log..

[5]  A. Kucera Measure, Π10-classes and complete extensions of PA , 1985 .

[6]  George Barmpalias,et al.  Algorithmic Randomness of Closed Sets , 2007, J. Log. Comput..

[7]  Rodney G. Downey,et al.  Randomness and reducibility , 2001, J. Comput. Syst. Sci..

[8]  Sebastiaan Terwijn,et al.  Lowness for The Class of Random Sets , 1999, J. Symb. Log..

[9]  George Barmpalias,et al.  Algorithmic randomness of continuous functions , 2008, Arch. Math. Log..

[10]  Péter Gács,et al.  Uniform test of algorithmic randomness over a general space , 2003, Theor. Comput. Sci..

[11]  Douglas Cenzer,et al.  Countable Thin Pi01 Classes , 1993, Ann. Pure Appl. Log..

[12]  Rodney G. Downey Some Computability-Theoretical Aspects of Reals and Randomness , 2002 .

[13]  Douglas A. Cenzer,et al.  Random Closed Sets , 2006, CiE.

[14]  Douglas A. Cenzer,et al.  Random Continuous Functions , 2007, Electron. Notes Theor. Comput. Sci..

[15]  A. Nies Computability and randomness , 2009 .

[16]  André Nies,et al.  Trivial Reals , 2002, CCA.

[17]  Willem L. Fouché,et al.  Arithmetical representations of Brownian motion I , 2000, Journal of Symbolic Logic.

[18]  Stephen G. Simpson Mass problems and randomness , 2005, Bull. Symb. Log..

[19]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[20]  Stephen Binns A splitting theorem for the Medvedev and Muchnik lattices , 2003, Math. Log. Q..

[21]  A. Nies Lowness properties and randomness , 2005 .

[22]  Jeffrey B. Remmel,et al.  Chapter 13 Π10 classes in mathematics , 1998 .

[23]  Anil Nerode,et al.  Handbook of Recursive Mathematics , 1998 .