Discrete-time asymptotic controllability implies smooth control-Lyapunov function

We demonstrate the existence of a smooth control-Lyapunov function (CLF) for difference equations asymptotically controllable to closed sets. We further show that this CLF may be used to construct a robust feedback stabilizer. The existence of such a CLF is a consequence of a more general result on the existence of weak Lyapunov function under the assumption of weak asymptotic stability of a closed (not necessarily compact) set for a difference inclusion.

[1]  E. Gilbert,et al.  An existence theorem for discrete-time infinite-horizon optimal control problems , 1985 .

[2]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[3]  Eduardo D. Sontag,et al.  Continuous control-Lyapunov functions for asymptotically controllable time-varying systems , 1999 .

[4]  Andrew R. Teel,et al.  Weak Converse Lyapunov Theorems and Control-Lyapunov Functions , 2003, SIAM J. Control. Optim..

[5]  Dragan Nesic,et al.  Optimization-Based Stabilization of Sampled-Data Nonlinear Systems via Their Approximate Discrete-Time Models , 2003, SIAM J. Control. Optim..

[6]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[7]  Eduardo Sontag Clocks and insensitivity to small measurement errors , 1999 .

[8]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[9]  Emilio Roxin On asymptotic stability in control systems , 1966 .

[10]  Hyungbo Shim,et al.  Further results on robustness of (possibly discontinuous) sample and hold feedback , 2004, IEEE Transactions on Automatic Control.

[11]  Emilio Roxin,et al.  Stability in general control systems. , 1965 .

[12]  Andrew R. Teel,et al.  Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control , 2005, Autom..

[13]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[14]  Ludovic Rifford,et al.  Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..

[15]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[16]  K. Deimling Multivalued Differential Equations , 1992 .

[17]  Jaroslav Kurzweil,et al.  Об обращении второй теоремы Ляпунова об устойчивости движения , 1956 .

[18]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[19]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[20]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[21]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[22]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[24]  Eduardo Sontag,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .