ACS Nano, volume 7, issue 5, pages 4520–4526, year 2013 // Self-Terminating Protocol for an Interfacial Complexation Reaction in Vacuo by Metal–Organic Chemical Vapor Deposition

Self-Terminating Protocol for an Interfacial Complexation Reaction in Vacuo by Metal–Organic Chemical Vapor Deposition Anthoula C. Papageorgiou, a) Sybille Fischer, Seung Cheol Oh, Özge Sağlam, Joachim Reichert, b) Alissa Wiengarten, Knud Seufert, Saranyan Vijayaraghavan, David Écija, Willi Auwärter, Francesco Allegretti, c) Robert G. Acres, Kevin C. Prince, Katharina Diller, Florian Klappenberger, and Johannes V. Barth Physik Department E20, Technische Universität München, 85748 Garching, Germany Sincrotrone Trieste, Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy

[1]  O. Shevaleevskiy,et al.  Dye-Sensitized Solar Cells , 2017 .

[2]  J. Barth,et al.  Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: adsorption and self-metalation of porphine on Cu(111). , 2013, The Journal of chemical physics.

[3]  T. Jung,et al.  Porphyrin metalation providing an example of a redox reaction facilitated by a surface reconstruction. , 2013, Chemical communications.

[4]  M. Yamashita,et al.  Variation of Kondo peak observed in the assembly of heteroleptic 2,3-naphthalocyaninato phthalocyaninato Tb(III) double-decker complex on Au(111). , 2013, ACS nano.

[5]  C. Pignedoli,et al.  Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms. , 2012, ACS nano.

[6]  A. Verdini,et al.  Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. , 2012, Nature materials.

[7]  A. Verdini,et al.  Changes of the molecule-substrate interaction upon metal inclusion into a porphyrin. , 2012, Chemistry.

[8]  V. Sessi,et al.  Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111). , 2012, Physical review letters.

[9]  T. Bach,et al.  Enantio- and regioselective epoxidation of olefinic double bonds in quinolones, pyridones, and amides catalyzed by a ruthenium porphyrin catalyst with a hydrogen bonding site. , 2012, Journal of the American Chemical Society.

[10]  H. Steinrück,et al.  Coordination and metalation bifunctionality of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin: toward a mixed-valence two-dimensional coordination network. , 2012, Journal of the American Chemical Society.

[11]  J. Barth,et al.  Self-metalation of 2H-tetraphenylporphyrin on Cu(111): an x-ray spectroscopy study. , 2012, The Journal of chemical physics.

[12]  Manuel Gruber,et al.  Robust spin crossover and memristance across a single molecule , 2012, Nature Communications.

[13]  C. Pignedoli,et al.  Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions. , 2011, Chemistry.

[14]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[15]  Andrew G. Scheuermann,et al.  Controlling the charge state of a single redox molecular switch. , 2011, Physical review letters.

[16]  A. Calzolari,et al.  Structure and Molecule–Substrate Interaction in a Co-octaethyl Porphyrin Monolayer on the Ag(110) Surface , 2011 .

[17]  J. Barth,et al.  Assembly and manipulation of rotatable cerium porphyrinato sandwich complexes on a surface. , 2011, Angewandte Chemie.

[18]  W. Hieringer,et al.  The surface trans effect: influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. , 2011, Journal of the American Chemical Society.

[19]  A. Verdini,et al.  Following the Metalation Process of Protoporphyrin IX with Metal Substrate Atoms at Room Temperature , 2011 .

[20]  C. Che,et al.  Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. , 2011, Chemical Society reviews.

[21]  M. Yamashita,et al.  Observation and electric current control of a local spin in a single-molecule magnet , 2011, Nature communications.

[22]  M. Fanetti,et al.  Conformational Adaptation and Electronic Structure of 2H-Tetraphenylporphyrin on Ag(111) during Fe Metalation , 2011 .

[23]  N. Lorente,et al.  Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. , 2011, Nature chemistry.

[24]  M. Persson,et al.  Reversible bond formation in a gold-atom-organic-molecule complex as a molecular switch. , 2010, Physical review letters.

[25]  J. Barth,et al.  Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide. , 2010, Journal of the American Chemical Society.

[26]  B. Gates,et al.  Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. , 2010, Chemical communications.

[27]  T. Jung,et al.  Controlling spins in adsorbed molecules by a chemical switch , 2010, Nature communications.

[28]  Hiroaki Yamanaka,et al.  Surface nano-architecture of a metal-organic framework. , 2010, Nature materials.

[29]  A. Seitsonen,et al.  Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111) , 2010 .

[30]  Xuefei Feng,et al.  Direct Synthesis of Nickel(II) Tetraphenylporphyrin and Its Interaction with a Au(111) Surface: A Comprehensive Study , 2010 .

[31]  C. Copéret C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. , 2010, Chemical reviews.

[32]  O. Vaughan,et al.  Deprotection, tethering, and activation of a one-legged metalloporphyrin on a chemically active metal surface: NEXAFS, synchrotron XPS, and STM study of [SAc]P-Mn(III)Cl on Ag(100). , 2009, Journal of the American Chemical Society.

[33]  O. Shekhah,et al.  Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. , 2009, Nature materials.

[34]  J. Barth Fresh perspectives for surface coordination chemistry , 2009 .

[35]  O. Vaughan,et al.  Deprotection, tethering, and activation of a catalytically active metalloporphyrin to a chemically active metal surface: [SAc](4)P-Mn(III)Cl on Ag(100). , 2009, Journal of the American Chemical Society.

[36]  J. Shapter,et al.  Ruthenium porphyrin functionalized single-walled carbon nanotube arrays--a step toward light harvesting antenna and multibit information storage. , 2008, Journal of the American Chemical Society.

[37]  R. Miranda,et al.  Molecular Conformation, Organizational Chirality, and Iron Metalation of meso-Tetramesitylporphyrins on Copper(100) , 2008 .

[38]  A. Seitsonen,et al.  Interaction of Cerium Atoms with Surface-Anchored Porphyrin Molecules , 2008 .

[39]  H. Steinrück,et al.  Principle and mechanism of direct porphyrin metalation: joint experimental and theoretical investigation. , 2007, Journal of the American Chemical Society.

[40]  H Wende,et al.  Substrate-induced magnetic ordering and switching of iron porphyrin molecules. , 2007, Nature materials.

[41]  R. Nolte,et al.  Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. , 2007, Nature nanotechnology.

[42]  J. Barth,et al.  Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  H. Steinrück,et al.  Direct synthesis of a metalloporphyrin complex on a surface. , 2006, Journal of the American Chemical Society.

[44]  J. Hrbek,et al.  Ru nanoclusters prepared by Ru3(CO)12 deposition on Au(111) , 2003 .

[45]  C. Che,et al.  Ruthenium and osmium porphyrin carbene complexes: synthesis, structure, and connection to the metal-mediated cyclopropanation of alkenes , 2002 .

[46]  Dirk M. Guldi,et al.  Fullerene—Porphyrin Architectures; Photosynthetic Antenna and Reaction Center Models , 2002 .

[47]  S. Murai,et al.  Ru(3)(CO)(12)-catalyzed coupling reaction of sp(3) C-H bonds adjacent to a nitrogen atom in alkylamines with alkenes. , 2001, Journal of the American Chemical Society.

[48]  James M. Tour,et al.  Molecular Electronics. Synthesis and Testing of Components , 2001 .

[49]  Antonella Macagnano,et al.  Porphyrins-based opto-electronic nose for volatile compounds detection , 2000 .

[50]  M. Seah,et al.  XPS: binding energy calibration of electron spectrometers 5—re‐evaluation of the reference energies , 1998 .

[51]  J. Stöhr,et al.  Curve fitting analysis of near‐edge core excitation spectra of free, adsorbed, and polymeric molecules , 1988 .

[52]  J. Takats,et al.  (η2‐OLEFIN)TETRACARBONYLRUTHENIUM COMPLEXES: PHOTOCHEMICAL SYNTHESES FROM DODECACARBONYLTRIRUTHENIUM AND QUANTUM YIELD DETERMINATIONS , 1981 .

[53]  J. Takats,et al.  (.eta.2-Olefin)tetracarbonylruthenium complexes: photochemical syntheses from dodecacarbonyltriruthenium and quantum yield determinations , 1981 .

[54]  J. Barth,et al.  A surface-anchored molecular four-level conductance switch based on single proton transfer. , 2011, Nature nanotechnology.

[55]  J. Barth,et al.  Surface-confined supramolecular coordination chemistry. , 2009, Topics in current chemistry.

[56]  C. Wagner Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy , 1979 .

[57]  S. Eaton,et al.  Reversible carbon monoxide binding by ruthenium carbonyl porphyrins , 1975 .