Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif

The carbonation resistance of alkali-activated binders is often tested via accelerated test protocols designed for Portland cements, without questioning whether the tests replicate the mechanisms observed in service. Thus, validation of accelerated methods is required to enable realistic prediction of material performance. Changes in pore solution equilibria cause the formation of sodium bicarbonates during accelerated carbonation, compared with hydrous sodium carbonates in natural carbonation. This shifts the carbonation mechanism to favour more rapid reaction progress, to give a higher apparent degree of acceleration (compared to natural conditions) than in Portland cements. The pore solution pH under accelerated carbonation is significantly lower than at natural CO2 concentrations, leading to a falsely short predicted service life (time to expected corrosion of embedded steel), as natural CO2 concentrations appear not to reduce the pH below 10. Thus, accelerated carbonation testing is unduly aggressive towards alkali-activated binders, and test results must be cautiously interpreted.

[1]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes , 1974 .

[2]  Marta Castellote,et al.  Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations , 2009 .

[3]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[4]  B. Dodge,et al.  Rate of Absorption of Carbon Dioxide in Water and in Alkaline Media , 1932 .

[5]  Erich D. Rodríguez,et al.  Effect of binder content on the performance of alkali-activated slag concretes , 2011 .

[6]  E. Königsberger,et al.  A generic and updatable Pitzer characterization of aqueous binary electrolyte solutions at 1 bar and 25 °C , 2011 .

[7]  C. Bury,et al.  272. The system sodium carbonate–calcium carbonate–water , 1933 .

[8]  Robert J. Rosenbauer,et al.  Gaylussite formation at mono lake, california , 1991 .

[9]  T. N. Kol’tsova CaAl2Si2O8-B2Al2Si2O8-H2O (B = Na, K) zeolites , 2010 .

[10]  Frank Winnefeld,et al.  Hydration of alkali-activated slag: comparison with ordinary Portland cement , 2006 .

[11]  John L. Provis,et al.  Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials , 2010 .

[12]  J. Johnston THE DETERMINATION OF CARBONIC ACID, COMBINED AND FREE, IN SOLUTION, PARTICULARLY IN NATURAL WATERS.1 , 1916 .

[13]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[14]  J. Duchesne,et al.  Measurement and prediction of portlandite solubility in alkali solutions , 1995 .

[15]  Rupert J. Myers,et al.  X-ray microtomography shows pore structure and tortuosity in alkali-activated binders , 2012 .

[16]  H. Eugster Sodium carbonate‐bicarbonate minerals as indicators of Pco2 , 1966 .

[17]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[18]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: the NaKMgCaClSO4H2O system from zero to high concentration at 25° C , 1980 .

[19]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to carbonation , 2001 .

[20]  F. Puertas,et al.  Carbonation process of alkali-activated slag mortars , 2006 .

[21]  Liv Haselbach,et al.  Potential for Carbon Dioxide Absorption in Concrete , 2009 .

[22]  D. Ho,et al.  Carbonation of concrete and its prediction , 1987 .

[23]  D. T. Wright,et al.  Sedimentary dolomite: a reality check , 2004, Geological Society, London, Special Publications.

[24]  U. Wirsching Experiments on the Hydrothermal Formation of Calcium Zeolites , 1981 .

[25]  C. Andrade,et al.  Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE , 2008 .

[26]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[27]  F. Puertas,et al.  Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator , 2003 .

[28]  Alain Sellier,et al.  COUPLED MOISTURE-CARBON DIOXIDE-CALCIUM TRANSFER MODEL FOR CARBONATION OF CONCRETE , 2004 .

[29]  E. Bilal,et al.  SUPERPOSED PARAGENESES IN THE SPURRITE-, TILLEYITE-AND GEHLENITE-BEARING SKARNS FROM CORNET HILL, APUSENI MOUNTAINS, ROMANIA , 2001 .

[30]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[31]  Hamlin M. Jennings,et al.  Pore solution chemistry of alkali-activated ground granulated blast-furnace slag , 1999 .

[32]  W. J. Frederick,et al.  Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25.degree.C. 2. Ternary mixing parameters , 1988 .

[33]  E. Königsberger,et al.  Low-temperature thermodynamic model for the system Na2CO3−MgCO3−CaCO3−H2O , 1999 .

[34]  Francisca Puertas,et al.  Hormigón alternativo basado en escorias activadas alcalinamente , 2008 .

[35]  F. Brunet,et al.  Calcium carbonates distribution in experimentally carbonated Portland cement cores , 2009 .

[36]  D. Ho,et al.  Carbonation of Concrete Incorporating Fly Ash or a Chemical Admixture , 1983 .

[37]  Ángel Palomo,et al.  Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products , 2005 .

[38]  Michael N. Fardis,et al.  A reaction engineering approach to the problem of concrete carbonation , 1989 .

[39]  John L. Provis,et al.  Technical and commercial progress in the adoption of geopolymer cement , 2012 .

[40]  H. Idrissi,et al.  Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior , 2010 .

[41]  Jan Deja,et al.  Carbonation aspects of alkali activated slag mortars and concretes , 2002 .

[42]  H. Eugster,et al.  Mineral Equilibria in the Searles Lake Evaporites, California , 1965 .

[43]  J. Yarwood,et al.  Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases , 2007 .

[44]  Samiran Mahapatra,et al.  Synthesis of All Crystalline Phases of Anhydrous Calcium Carbonate , 2010 .

[45]  Crystal structure of hillebrandite: A natural analogue of calcium silicate hydrate (CSH) phases in Portland cement , 1995 .

[46]  M. Sayagués,et al.  Calcite, vaterite and aragonite forming on cement hydration from liquid and gaseous phase , 2004 .

[47]  E. Reardon,et al.  An ion interaction model for the determination of chemical equilibria in cement/water systems , 1990 .

[48]  Paulo R. L. Helene,et al.  Sources of Variations When Comparing Concrete Carbonation Results , 2009 .

[49]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[50]  John L. Provis,et al.  Pore solution composition and alkali diffusion in inorganic polymer cement , 2010 .