Trapping dust particles in the outer regions of protoplanetary disks

In order to explain grain growth to mm sized particles and their retention in outer regions of protoplanetary disks, as it is observed at sub-mm and mm wavelengths, we investigate if strong inhomogeneities in the gas density profiles can slow down excessive radial drift and can help dust particles to grow. We use coagulation/fragmentation and disk-structure models, to simulate the evolution of dust in a bumpy surface density profile which we mimic with a sinusoidal disturbance. For different values of the amplitude and length scale of the bumps, we investigate the ability of this model to produce and retain large particles on million years time scales. In addition, we introduced a comparison between the pressure inhomogeneities considered in this work and the pressure profiles that come from magnetorotational instability. Using the Common Astronomy Software Applications ALMA simulator, we study if there are observational signatures of these pressure inhomogeneities that can be seen with ALMA. We present the favorable conditions to trap dust particles and the corresponding calculations predicting the spectral slope in the mm-wavelength range, to compare with current observations. Finally we present simulated images using different antenna configurations of ALMA at different frequencies, to show that the ring structures will be detectable at the distances of the Taurus Auriga or Ophiucus star forming regions.

[1]  T. Henning,et al.  THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF PLANET MIGRATION IN TURBULENT STRATIFIED DISKS , 2011, 1105.2235.

[2]  L. Testi,et al.  Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks , 2010, 1006.0940.

[3]  D. Lin,et al.  On the tidal interaction between protoplanets and the primordial solar nebula. I - Linear calculation of the role of angular momentum exchange , 1984 .

[4]  The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments , 2009, 0910.4251.

[5]  L. Testi,et al.  Large grains in the disk of CQ Tau , 2003, astro-ph/0303420.

[6]  A. Johansen,et al.  Dust Diffusion in Protoplanetary Disks by Magnetorotational Turbulence , 2005, astro-ph/0501641.

[7]  T. Henning,et al.  Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations , 2010, 1002.2521.

[8]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[9]  Accretion of terrestrial planets from oligarchs in a turbulent disk , 2006, astro-ph/0612619.

[10]  Koji Wada,et al.  THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS , 2011 .

[11]  Charles F. Gammie,et al.  Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks , 1995 .

[12]  S. Okuzumi ELECTRIC CHARGING OF DUST AGGREGATES AND ITS EFFECT ON DUST COAGULATION IN PROTOPLANETARY DISKS , 2009, 0901.2886.

[13]  L. Hartmann,et al.  Toward Planetesimals in the Disk around TW Hydrae: 3.5 Centimeter Dust Emission , 2005, astro-ph/0506644.

[14]  T. Henning,et al.  TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS , 2011, 1104.4565.

[15]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[16]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[17]  Leiden University,et al.  ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE , 2008, 0811.3937.

[18]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[19]  The (sub-)millimeter SED of protoplanetary disks in the outskirts of the Orion nebula cluster , 2010, 1010.1677.

[20]  Astronomy,et al.  Resolved images of self-gravitating circumstellar discs with ALMA , 2010, 1004.5389.

[21]  Kastner,et al.  VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hydrae. , 2000, The Astrophysical journal.

[22]  L. Testi,et al.  Constraints on Properties of the Protoplanetary Disks around UX Orionis and CQ Tauri , 2001, astro-ph/0102473.

[23]  C. Dullemond,et al.  Gas- and dust evolution in protoplanetary disks , 2010, 1002.0335.

[24]  Hui Li,et al.  Rossby Wave Instability of Keplerian Accretion Disks , 1998, astro-ph/9809321.

[25]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[26]  H. Kimura,et al.  COLLISIONAL GROWTH CONDITIONS FOR DUST AGGREGATES , 2009 .

[27]  C. Schafer,et al.  Collisions between equal-sized ice grain agglomerates , 2007, 0705.2672.

[28]  J. Carpenter,et al.  STRUCTURE AND EVOLUTION OF PRE-MAIN-SEQUENCE CIRCUMSTELLAR DISKS , 2009, 0906.2227.

[29]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[30]  T. Henning,et al.  Survival of the mm-cm size grain population observed in protoplanetary disks , 2007, 0704.2332.

[31]  M. Tagger,et al.  Reviving Dead Zones in accretion disks by Rossby vortices at their boundaries , 2005 .

[32]  L. Testi,et al.  Dust grain growth in ρ-Ophiuchi protoplanetary disks , 2010, 1008.1144.

[33]  Heidelberg,et al.  High-resolution simulations of planetesimal formation in turbulent protoplanetary discs , 2010, Proceedings of the International Astronomical Union.

[34]  A. Juhász,et al.  Possible planet-forming regions on submillimetre images , 2011, 1109.6177.

[35]  S. A. Colgate,et al.  Rossby Wave Instability of Thin Accretion Disks. III. Nonlinear Simulations , 2000, astro-ph/0012479.

[36]  S. Wolf,et al.  Spatially resolved detection of crystallized water ice in a TTauri object , 2010, 1005.3719.

[37]  Robert F. Stein,et al.  Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow , 1995 .

[38]  T. Henning,et al.  Particle-Trapping Eddies in Protoplanetary Accretion Disks , 1997 .

[39]  R. Neri,et al.  Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths , 2009, 0912.3356.

[40]  K. Menou,et al.  Rayleigh adjustment of narrow barriers in protoplanetary discs , 2009, 0904.4266.

[41]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[42]  F. Adams,et al.  Type I Planetary Migration with MHD Turbulence , 2003, astro-ph/0308406.

[43]  T. Nakamoto,et al.  Formation, early evolution, and gravitational stability of protoplanetary disks , 1994 .

[44]  C. Dullemond,et al.  The outcome of protoplanetary dust growth: pebbles, boulders or planetesimals? , 2009, 1001.0488.

[45]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[46]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[47]  J. Cuzzi,et al.  Closed-form expressions for particle relative velocities induced by turbulence , 2007, astro-ph/0702303.

[48]  D. Wilner,et al.  Large grains in discs around young stars: ATCA observations of WW Chamaeleontis, RU Lupi and CS Chamaeleontis , 2008, 0812.3849.

[49]  A. Youdin,et al.  Planetesimal Formation by Gravitational Instability , 2002, astro-ph/0207536.

[50]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[51]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[52]  C. Dullemond,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. II. EXTENSION TO FAINTER SOURCES , 2010, 1007.5070.

[53]  K. Miyake,et al.  Effects of Particle Size Distribution on Opacity Curves of Protoplanetary Disks around T Tauri Stars , 1993 .

[54]  A. Dutrey,et al.  A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties , 2011 .

[55]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[56]  C. Dullemond,et al.  A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets , 2008, 0807.5052.

[57]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .