Content Based Image Retrieval Using Bag-Of-Regions

In this work we introduce the Bag-Of-Regions model, inspired from the Bag-Of-Visual-Words. Instead of clustering local image patches represented by SIFT or related descriptors, low level descriptors are extracted and clustered from image regions, as given by a segmentation algorithm. The Bag-Of-Region model allows to define visual dictionaries that capture extra information with respect to Bag-Of-Visual-Words. Combined description schemes and ad-hoc incremental clustering for visual dictionnaries are proposed. The results on public datasets are promising.

[1]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[2]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Javed A. Aslam,et al.  Models for metasearch , 2001, SIGIR '01.

[4]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[8]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[9]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[10]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[11]  Pabitra Mitra,et al.  Quadtree decomposition based extended vector space model for image retrieval , 2011, 2011 IEEE Workshop on Applications of Computer Vision (WACV).

[12]  Pushmeet Kohli,et al.  Associative hierarchical CRFs for object class image segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Selim Aksoy,et al.  Scene Classification Using Bag-of-Regions Representations , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[15]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[16]  Thomas Hofmann,et al.  Learning the Similarity of Documents: An Information-Geometric Approach to Document Retrieval and Categorization , 1999, NIPS.

[17]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[18]  Jong-Hak Lee,et al.  Analyses of multiple evidence combination , 1997, SIGIR '97.

[19]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[20]  Edwin Lughofer,et al.  Extensions of vector quantization for incremental clustering , 2008, Pattern Recognit..

[21]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[22]  Hui Zhang,et al.  Localized Content-Based Image Retrieval , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[25]  Jenny Benois-Pineau,et al.  Segmentation-based multi-class semantic object detection , 2012, Multimedia Tools and Applications.

[26]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Fabrice Souvannavong Region-based video content indexing and retrieval , 2005 .

[28]  Trevor Darrell,et al.  Adaptive Vocabulary Forests br Dynamic Indexing and Category Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[29]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[30]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Svetlana Lazebnik,et al.  Superparsing , 2010, International Journal of Computer Vision.