Satellite laser ranging and its applications

Satellite laser ranging (SLR) provides an important capability for precise orbit determination and for geophysical parameter estimation to support a number of contemporary geodynamic and oceanographic investigations. The precision of the SLR measurement has improved from the early meter-level systems to the current capabilities of a few centimeters for the best systems. The accuracy of the orbits and geophysical parameter recovery have shown an associated improvement. Polar motion with accuracies of 2 mas, station coordinates better than 10 cm, and interstation baseline rates indicative of tectonic motion are determined routinely with the current set of global SLR data. This discussion reviews the SLR measurement, analysis approach, and some of the recent results derived from the current SLR data set.

[1]  Francis J. Lerch,et al.  Precision geodesy and geodynamics using Starlette laser ranging , 1985 .

[2]  C. W. Murray,et al.  Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees , 1973 .

[3]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[4]  Anny Cazenave,et al.  Solid Earth and ocean tides estimated from satellite orbit analyses , 1974 .

[5]  R. Langley,et al.  Atmospheric angular momentum and the length of day: a common fluctuation with a period near 50 days , 1981, Nature.

[6]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[7]  Kurt Lambeck,et al.  The Earth's Variable Rotation: Geophysical Causes and Consequences , 1980 .

[8]  C. Johnson,et al.  The Lageos satellite , 1976 .

[9]  Seasonal displacement and deformation of the Earth by the atmosphere , 1979 .

[10]  Thomas H. Jordan,et al.  Present‐day plate motions , 1977 .

[11]  H. Frey,et al.  Space-Age Geodesy: The NASA Crustal Dynamics Project , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[12]  David E. Smith,et al.  A global geodetic reference frame from LAGEOS ranging (SL5.1AP) , 1985 .

[13]  W. Sjogren,et al.  Geophysical parameters of the Earth‐Moon System , 1980 .

[14]  R. Langley,et al.  Earth rotation from lunar laser ranging , 1981 .

[15]  M 2 ocean tide parameters and the deceleration of the Moon's mean longitude from satellite orbit data , 1978 .

[16]  Bob E. Schutz,et al.  Station coordinates, baselines, and Earth rotation from LAGEOS laser ranging: 1976–1984 , 1985 .

[17]  Precision orbit computations for Starlette , 1976 .

[18]  B. Tapley Polar motion and Earth rotation , 1983 .

[19]  E. A. Flinn Application of space technology to geodynamics. , 1981, Science.

[20]  A gravity model for crustal dynamics (GEM-L2) , 1985 .

[21]  I. Shapiro,et al.  Evidence for lunar librations near resonance , 1982 .

[22]  David E. Smith,et al.  Contributions to the National Geodetic Satellite Program by Goddard Space Flight Center , 1976 .

[23]  Francis J. Lerch,et al.  Goddard earth models for oceanographic applications (GEM 10B and IOC) , 1981 .

[24]  Bruce C. Douglas,et al.  Lunar tidal acceleration obtained from satellite-derived ocean tide parameters , 1978 .

[25]  Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison , 1985, Science.

[26]  P. Minott,et al.  Prelaunch testing of the laser geodynamic satellite (LAGEOS); target cross section (A) , 1976 .

[27]  K. Lambeck,et al.  Reply to comments by Lerch et al. on ‘The Earth's shape and gravity field: a report of progress from 1958 to 1982’ , 1983 .

[28]  Byron D. Tapley,et al.  The SEASAT altimeter data and its accuracy assessment , 1982 .

[29]  B. D. Tapley,et al.  The Seasat Precision Orbit Determination Experiment , 1980 .