Architectures and techniques for all-optical networks

Abstract Some recent results on all-optical packet-switching and broadcasting networks are presented. The performance evaluation problem of packet-switching transparent optical networks with deflection routing is addressed. Transmission error arguments show how, for a given optical bit rate, the size of an all-optical nonregenerative multishop network is limited by the accumulation of noise and distortion in the optical fiber channel. Time-domain multiple access techniques are exploited in novel architectures based on recently proposed all-optical sampling gates to realize the matching of the ultrahigh optical speed allowed by the large bandwidth of the fiber with the lower speed of the electronic components needed at the user ends. These architectures allow great simplification of the node structure in the considered all-optical multihop and broadcast networks.

[1]  Alberto Bononi,et al.  Design and channel constraint analysis of ultrafast multihop all-optical networks with deflection routing employing solitons , 1993 .

[2]  Mark J. Karol,et al.  A simple adaptive routing scheme for ShuffleNet multihop lightwave networks , 1988, IEEE Global Telecommunications Conference and Exhibition. Communications for the Information Age.

[3]  Alberto Bononi,et al.  Novel packet architecture for all-optical ultrafast packet-switching networks , 1992 .

[4]  Anthony S. Acampora,et al.  Multihop lightwave networks: a comparison of store-and-forward and hot-potato routing , 1992, IEEE Trans. Commun..

[5]  S. Kikuchi,et al.  Optical wavelength-division multiplexing high-speed switching system for B-ISDN , 1991, IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record.

[6]  Nicholas F. Maxemchuk,et al.  Routing in the Manhattan Street Network , 1987, IEEE Trans. Commun..

[7]  T. Tanbun-Ek,et al.  64 Gb/s all-optical demultiplexing with the nonlinear optical-loop mirror , 1992, IEEE Photonics Technology Letters.

[8]  T. Tanbun-Ek,et al.  32 Gb/s optical soliton data transmission over 90 km , 1992, IEEE Photonics Technology Letters.

[9]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[10]  Jian-Guo Zhang Development of high-speed fiber optic networks for real-time multimedia communications , 1993, Other Conferences.

[11]  Andrea Fumagalli,et al.  An Optical Switch Architecture for Manhattan Networks , 1993, IEEE J. Sel. Areas Commun..

[12]  Alberto Bononi,et al.  Analysis and comparison of hot-potato and single-buffer deflection routing in very high bit rate optical mesh networks , 1995, IEEE Trans. Commun..

[13]  P. Baran,et al.  On Distributed Communications Networks , 1964 .

[14]  Paul R. Prucnal,et al.  Self-clocked optical control of a self-routed photonic switch , 1989 .

[15]  J. Gordon Interaction forces among solitons in optical fibers. , 1983, Optics letters.

[16]  Nick Doran,et al.  All-optical Gbit/s switching using nonlinear optical loop mirror , 1991 .

[17]  K. Smith,et al.  All-optical clock recovery using a mode-locked laser , 1992 .

[18]  Anthony S. Acampora,et al.  Terabit lightwave networks: The multihop approach , 1987, AT&T Technical Journal.

[19]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[20]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[21]  Albert G. Greenberg,et al.  Sharp approximate models of deflection routing in mesh networks , 1993, IEEE Trans. Commun..

[22]  P.R. Prucnal,et al.  Demonstration of a rapidly tunable optical time-division multiple-access coder , 1991, IEEE Photonics Technology Letters.

[23]  H.M. Presby,et al.  Amplified integrated star couplers with zero loss , 1991, IEEE Photonics Technology Letters.

[24]  M. Saruwatari,et al.  10 GHz timing extraction from randomly modulated optical pulses using phase-locked loop with travelling-wave laser-diode optical amplifier using optical gain modulation , 1992 .

[25]  Maxemchuk The Manhattan street network , 1985 .

[26]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[27]  M. Islam,et al.  Ultrafast all-optical logic gates based on soliton trapping in fibers. , 1989, Optics letters.

[28]  N. F. Maxemchuk,et al.  Regular mesh topologies in local and metropolitan area networks , 1985, AT&T Technical Journal.