Multiscale Multiblock Batch Monitoring: Sensor and Process Drift and Degradation

A multiblock multiscale multiway principal component analysis (MSPCA) modeling approach is presented for multivariate statistical process performance monitoring of batch processes. Process measurements, representing the cumulative effect of many underlying process phenomena, are decomposed into scales using wavelet transformations. The decomposed process measurements are then arranged into blocks of scales and approximations. MSPCA is then used to build a model that can be used for fault detection and identification of incipient sensor and process malfunctions. The proposed method was evaluated on a benchmark fed-batch penicillin fermentation process for the detection and diagnosis of subtle sensor and process faults, and the results were compared with those obtained using conventional multiway PCA (MPCA). This study contributes to the discussions of the advantages and benefits from using multiscale-based multivariate statistical process monitoring schemes over conventional multivariate statistical proces...

[1]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[2]  John F. MacGregor,et al.  Product transfer between plants using historical process data , 2000 .

[3]  Jose A. Romagnoli,et al.  Wavelet-based nonlinear multivariate statistical process control , 2005 .

[4]  Peter A Vanrolleghem,et al.  Adaptive Consensus Principal Component Analysis for On-Line Batch Process Monitoring , 2004, Environmental monitoring and assessment.

[5]  Si-Zhao Joe Qin,et al.  Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..

[6]  ChangKyoo Yoo,et al.  Fault detection of batch processes using multiway kernel principal component analysis , 2004, Comput. Chem. Eng..

[7]  Theodora Kourti,et al.  Model Predictive Monitoring for Batch Processes , 2004 .

[8]  Theodora Kourti,et al.  Multivariate SPC Methods for Process and Product Monitoring , 1996 .

[9]  Pedro M. Saraiva,et al.  Multiscale Statistical Process Control of Paper Surface Profiles , 2006 .

[10]  S. Joe Qin,et al.  Multivariate process monitoring and fault diagnosis by multi-scale PCA , 2002 .

[11]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .

[12]  Age K. Smilde,et al.  Generalized contribution plots in multivariate statistical process monitoring , 2000 .

[13]  Tapas K. Das,et al.  Wavelet-based multiscale statistical process monitoring: A literature review , 2004 .

[14]  Seongkyu Yoon,et al.  Principal‐component analysis of multiscale data for process monitoring and fault diagnosis , 2004 .

[15]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[16]  P. A. Taylor,et al.  Synchronization of batch trajectories using dynamic time warping , 1998 .

[17]  R. V. Tona,et al.  Improving of wavelets filtering approaches , 2005 .

[18]  José C. Menezes,et al.  Multiblock PLS as an approach to compare and combine NIR and MIR spectra in calibrations of soybean flour , 2005 .

[19]  J. Macgregor,et al.  Experiences with industrial applications of projection methods for multivariate statistical process control , 1996 .

[20]  John F. MacGregor,et al.  Product design through multivariate statistical analysis of process data , 1998 .

[21]  In-Beum Lee,et al.  Multiblock PLS-based localized process diagnosis , 2005 .

[22]  Age K. Smilde,et al.  Multiway multiblock component and covariates regression models , 2000 .

[23]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[24]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[25]  Richard G. Brereton,et al.  Window consensus PCA for multiblock statistical process control: adaption to small and time‐dependent normal operating condition regions, illustrated by online high performance liquid chromatography of a three‐stage continuous process , 2010 .

[26]  Michael J. Piovoso,et al.  On unifying multiblock analysis with application to decentralized process monitoring , 2001 .

[27]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[28]  Christiane M. Jaeckle,et al.  Industrial applications of product design through the inversion of latent variable models , 2000 .

[29]  Chunhui Zhao,et al.  Multiblock-Based Qualitative and Quantitative Spectral Calibration Analysis , 2010 .

[30]  C Rosen,et al.  Multivariate and multiscale monitoring of wastewater treatment operation. , 2001, Water research.

[31]  Seongkyu Yoon,et al.  Statistical and causal model‐based approaches to fault detection and isolation , 2000 .

[32]  Pedro M. Saraiva,et al.  Multiscale statistical process control with multiresolution data , 2006 .

[33]  Julian Morris,et al.  Nonlinear multiscale modelling for fault detection and identification , 2008 .

[34]  Furong Gao,et al.  Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis , 2003 .

[35]  Theodora Kourti,et al.  Product transfer between sites using Joint-Y PLS , 2005 .

[36]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[37]  S. de Jong,et al.  A framework for sequential multiblock component methods , 2003 .

[38]  Svante Wold,et al.  Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection , 1996 .

[39]  Julian Morris,et al.  The integration of spectroscopic and process data for enhanced process performance monitoring , 2008 .

[40]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[41]  Bhavik R. Bakshi,et al.  Multiscale SPC using wavelets: Theoretical analysis and properties , 2003 .

[42]  Yingwei Zhang,et al.  Multivariate process monitoring and analysis based on multi-scale KPLS , 2011 .

[43]  Gülnur Birol,et al.  A modular simulation package for fed-batch fermentation: penicillin production , 2002 .

[44]  John F. MacGregor,et al.  Adaptive batch monitoring using hierarchical PCA , 1998 .

[45]  Bhupinder S. Dayal,et al.  Recursive exponentially weighted PLS and its applications to adaptive control and prediction , 1997 .

[46]  Pekka Teppola,et al.  Wavelet–PLS regression models for both exploratory data analysis and process monitoring , 2000 .

[47]  Hae Woo Lee,et al.  Multi-scale extension of PLS algorithm for advanced on-line process monitoring , 2009 .

[48]  J. Macgregor,et al.  Analysis of multiblock and hierarchical PCA and PLS models , 1998 .

[49]  Theodora Kourti,et al.  Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS , 1995 .

[50]  A. Smilde,et al.  Multiblock PLS analysis of an industrial pharmaceutical process , 2002, Biotechnology and bioengineering.

[51]  A. J. Morris,et al.  Confidence limits for contribution plots , 2000 .

[52]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[53]  B. Bakshi,et al.  On-line multiscale filtering of random and gross errors without process models , 1999 .

[54]  S. Joe Qin,et al.  Error based criterion for on-line wavelet data compression , 2001 .

[55]  Seongkyu Yoon,et al.  Fault diagnosis with multivariate statistical models part I: using steady state fault signatures , 2001 .