Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations
暂无分享,去创建一个
[1] Yves Dumont. Vibrations of a beam between stops: numerical simulations and comparison of several numerical schemes , 2002, Math. Comput. Simul..
[2] Laetitia Paoli,et al. VIBRATIONS OF A BEAM BETWEEN OBSTACLES. CONVERGENCE OF A FULLY DISCRETIZED APPROXIMATION , 2006 .
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] Laetitia Paoli,et al. Numerical simulation of the dynamics of an impacting bar , 2007 .
[5] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[6] Y. Dumont,et al. Vibrations of a beam between stops: convergence of a fully discretized approximation , 2004 .
[8] David E. Stewart,et al. An Euler-Bernoulli Beam with Dynamic Contact: Discretization, Convergence, and Numerical Results , 2005, SIAM J. Numer. Anal..
[9] Christian Breitsamter,et al. Numerical Simulation Model , 2015 .
[10] Laetitia Paoli,et al. Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] H. R. Evans,et al. INTRODUCTION A LA METHODE DES ELEMENTS FINIS , 1979 .
[12] OFTHERMOFORMINGM. K. Warby,et al. Numerical simulation , 1990 .
[13] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[14] Laetitia Paoli,et al. Numerical simulation of a model of vibrations with joint clearance , 2008, Int. J. Comput. Appl. Technol..
[15] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .