Generalized tomographic maps

We introduce several possible generalizations of tomography to curved surfaces. We analyze different types of elliptic, hyperbolic, and hybrid tomograms. In all cases it is possible to consistently define the inverse tomographic map. We find two different ways of introducing tomographic sections. The first method operates by deformations of the standard Radon transform. The second method proceeds by shifting a given quadric pattern. The most general tomographic transformation can be defined in terms of marginals over surfaces generated by deformations of complete families of hyperplanes or quadrics. We discuss practical and conceptual perspectives and possible applications.

[1]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[2]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[3]  Olga V. Man'ko,et al.  Quantum states in probability representation and tomography , 1997 .

[4]  C. Kurtsiefer,et al.  Measurement of the Wigner function of an ensemble of helium atoms , 1997, Nature.

[5]  G Brida,et al.  Joint multipartite photon statistics by on/off detection. , 2006, Optics letters.

[6]  B. A. Harmon,et al.  Imaging high-energy astrophysical sources using Earth occultation , 1993, Nature.

[7]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[8]  Stefano Mancini,et al.  Wigner function and probability distribution for shifted and squeezed quadratures , 1995 .

[9]  M. G. A. Paris,et al.  Measuring the photon distribution with ON/OFF photodetectors , 2006 .

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  Demetrios N. Christodoulides,et al.  Observation of accelerating Airy beams. , 2007 .

[12]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[13]  M. L. Stevenson,et al.  Extraterrestrial neutrinos and Earth structure , 1995 .

[14]  Matteo G. A. Paris,et al.  Quorum of observables for universal quantum estimation , 2001 .

[15]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Giuseppe Marmo,et al.  Tomography in Abstract Hilbert Spaces , 2006, Open Syst. Inf. Dyn..

[17]  Z Hradil,et al.  Biased tomography schemes: an objective approach. , 2006, Physical review letters.

[18]  V. Man'ko,et al.  Star-Product of Generalized Wigner-Weyl Symbols on SU(2) Group, Deformations, and Tomographic Probability Distribution , 2000 .

[19]  S. Helgason The surjectivity of invariant di erential operators on symmetric spaces , 1973 .

[20]  Takashi Hattori,et al.  Asphericity in Supernova Explosions from Late-Time Spectroscopy , 2008, Science.

[21]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[22]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[23]  V. I. Man'ko,et al.  Tomograms and other transforms: a unified view , 2001 .

[24]  C. Ross Found , 1869, The Dental register.

[25]  A. Arkhipov,et al.  Quantum transitions in the center-of-mass tomographic probability representation , 2005 .

[26]  Marco Genovese,et al.  Experimental reconstruction of photon statistics without photon counting. , 2005, Physical review letters.

[27]  Neutrino tomography of gamma-ray bursts and massive stellar collapses , 2003, astro-ph/0303505.

[28]  V. I. Man'ko,et al.  Radon transform on the cylinder and tomography of a particle on the circle , 2007 .

[29]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[30]  P. Bertrand,et al.  A tomographic approach to Wigner's function , 1987 .