A numerical unitarity formalism for evaluating one-loop amplitudes

Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement the method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.

[1]  L. Dixon,et al.  On-shell methods in perturbative QCD , 2007, 0704.2798.

[2]  D. Forde Direct extraction of one-loop integral coefficients , 2007, 0704.1835.

[3]  R. Pittau,et al.  Numerical evaluation of six-photon amplitudes , 2007, 0704.1271.

[4]  Z. Kunszt,et al.  Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes , 2006, hep-ph/0612277.

[5]  Bo Feng,et al.  Unitarity Cuts with Massive Propagators and Algebraic Expressions for Coefficients , 2006, hep-ph/0612089.

[6]  P. Mastrolia On triple-cut of scattering amplitudes , 2006, hep-th/0611091.

[7]  Z. Kunszt,et al.  D-dimensional unitarity cut method , 2006, hep-ph/0609191.

[8]  J. Guillet,et al.  Algebraic evaluation of rational polynomials in one-loop amplitudes , 2006, hep-ph/0609054.

[9]  R. Pittau,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[10]  L. Dixon,et al.  All One-loop Maximally Helicity Violating Gluonic Amplitudes in QCD , 2006, hep-ph/0607014.

[11]  Gang Yang,et al.  The Rational Part of QCD Amplitude II: the Five-Gluon , 2006 .

[12]  Gang Yang,et al.  The rational parts of one-loop QCD amplitudes III: The six-gluon case , 2006, hep-ph/0607016.

[13]  L. Dixon,et al.  Bootstrapping one-loop QCD amplitudes with general helicities , 2006, hep-ph/0604195.

[14]  P. Mastrolia,et al.  Cut-constructible part of QCD amplitudes , 2006, hep-ph/0602178.

[15]  G. Zanderighi,et al.  The one-loop amplitude for six-gluon scattering , 2006, hep-ph/0602185.

[16]  L. Dixon,et al.  Bootstrapping multiparton loop amplitudes in QCD , 2005, hep-ph/0507005.

[17]  L. Dixon,et al.  The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.

[18]  F. Cachazo,et al.  One-loop amplitudes of gluons in supersymmetric QCD , 2005, hep-ph/0503132.

[19]  L. Dixon,et al.  On-shell recurrence relations for one-loop QCD amplitudes , 2005, hep-th/0501240.

[20]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical review letters.

[21]  F. Cachazo,et al.  New recursion relations for tree amplitudes of gluons , 2004, hep-th/0412308.

[22]  F. Cachazo,et al.  Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.

[23]  L. Dixon,et al.  N=1 supersymmetric one-loop amplitudes and the holomorphic anomaly of unitarity cuts , 2004, hep-th/0410296.

[24]  E. Witten Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.

[25]  C. Papadopoulos,et al.  HELAC: A package to compute electroweak helicity amplitudes , 2000, hep-ph/0002082.

[26]  L. Dixon,et al.  ONE-LOOP AMPLITUDES FOR E+E- TO FOUR PARTONS , 1997, hep-ph/9708239.

[27]  A. Morgan,et al.  MASSIVE LOOP AMPLITUDES FROM UNITARITY , 1995, hep-ph/9511336.

[28]  L. Dixon,et al.  Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.

[29]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[30]  Z. Kunszt,et al.  One-loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory , 1993, hep-ph/9305239.

[31]  L. Dixon,et al.  One-loop corrections to five-gluon amplitudes. , 1993, Physical review letters.

[32]  L. Dixon,et al.  Dimensionally regulated one-loop integrals , 1992, hep-ph/9212308.

[33]  W. Giele,et al.  On the production of a W and jets at hadron colliders , 1991 .

[34]  H. Kuijf,et al.  Jets at the LHC , 1991 .

[35]  Z. Bern,et al.  Efficient calculation of one-loop QCD amplitudes. , 1991, Physical review letters.

[36]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[37]  W. Giele,et al.  On six-jet production at hadron colliders , 1989 .

[38]  W. Giele,et al.  Recursive calculations for processes with n gluons , 1988 .

[39]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[40]  J. Sexton,et al.  QCD radiative corrections to parton-parton scattering , 1986 .

[41]  S. D. Ellis,et al.  A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies , 1986 .

[42]  W. V. Neerven,et al.  Dimensional regularization of mass and infrared singularities in two-loop on-shell vertex functions , 1986 .

[43]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[44]  J. Vermaseren,et al.  Large loop integrals , 1984 .

[45]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[46]  D. Melrose Reduction of feynman diagrams , 1965 .

[47]  R. Cutkosky Singularities and Discontinuities of Feynman Amplitudes , 1960 .

[48]  Gang Yang,et al.  The Rational Part of QCD Amplitude III : the Six-Gluon , 2006 .