Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

[1]  Hiroyuki Fujiwara,et al.  Effects of carrier concentration on the dielectric function of ZnO:Ga and In 2 O 3 : Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption , 2005 .

[2]  M. Zeman,et al.  Front/Rear Decoupled Texturing in Refractive and Diffractive Regimes for Ultra-Thin Silicon-Based Solar Cells , 2013 .

[3]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[4]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[5]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[6]  H. Fujiwara,et al.  Reduction of Optical Loss in Hydrogenated Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells by High-Mobility Hydrogen-Doped In2O3 Transparent Conductive Oxide , 2008 .

[7]  E. Yablonovitch Statistical ray optics , 1982 .

[8]  T. Sekiguchi,et al.  Investigation of grain boundaries in BaSi2 epitaxial films on Si(1 1 1) substrates using transmission electron microscopy and electron-beam-induced current technique , 2012 .

[9]  Y. Takeuchi,et al.  High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition , 2015 .

[10]  T. Suemasu,et al.  Photoresponse Properties of Semiconducting BaSi2 Epitaxial Films Grown on Si(111) Substrates by Molecular Beam Epitaxy , 2009 .

[11]  T. Suemasu,et al.  Fabrication and characterization of polycrystalline BaSi2 by RF sputtering , 2013 .

[12]  T. Suemasu,et al.  Optical Absorption Properties of BaSi2 Epitaxial Films Grown on a Transparent Silicon-on-Insulator Substrate Using Molecular Beam Epitaxy , 2011 .

[13]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[14]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[15]  N. Umezawa,et al.  BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study , 2014 .

[16]  V. Borisenko,et al.  Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties , 2007 .

[17]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[18]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[19]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[20]  M. Imai,et al.  Investigation of the energy band structure of orthorhombic BaSi2 by optical and electrical measurements and theoretical calculations , 2002 .

[21]  T. Suemasu,et al.  Photoresponse Properties of Polycrystalline BaSi2 Films Grown on SiO2 Substrates Using (111)-Oriented Si Layers by an Aluminum-Induced Crystallization Method , 2009 .

[22]  P. M. Raccah,et al.  Minority carrier diffusion length measurements in CdTe by a photocurrent technique , 1980 .

[23]  Christophe Ballif,et al.  Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. , 2015, The journal of physical chemistry letters.

[24]  Eugene Bykov,et al.  Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current , 2010 .

[25]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[26]  Christophe Ballif,et al.  Highly transparent modulated surface textured front electrodes for high‐efficiency multijunction thin‐film silicon solar cells , 2015 .

[27]  M. Zeman,et al.  Modelling of thin-film silicon solar cells , 2013 .

[28]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[29]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[30]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[31]  R. M. Swanson,et al.  Approaching the 29% limit efficiency of silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..