Independent Feedback Vertex Set for $P_5$-free Graphs

The NP-complete problem Feedback Vertex Set is to decide if it is possible, for a given integer k>=0, to delete at most k vertices from a given graph so that what remains is a forest. The variant in which the deleted vertices must form an independent set is called Independent Feedback Vertex Set and is also NP-complete. In fact, even deciding if an independent feedback vertex set exists is NP-complete and this problem is closely related to the 3-Colouring problem, or equivalently, to the problem of deciding if a graph has an independent odd cycle transversal, that is, an independent set of vertices whose deletion makes the graph bipartite. We initiate a systematic study of the complexity of Independent Feedback Vertex Set for H-free graphs. We prove that it is NP-complete if H contains a claw or cycle. Tamura, Ito and Zhou proved that it is polynomial-time solvable for P_4-free graphs. We show that it remains in P for P_5-free graphs. We prove analogous results for the Independent Odd Cycle Transversal problem, which asks if a graph has an independent odd cycle transversal of size at most k for a given integer k>=0.

[1]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[2]  Keith Edwards,et al.  The Complexity of Colouring Problems on Dense Graphs , 1986, Theor. Comput. Sci..

[3]  Peter J. Slater,et al.  Efficient Edge Domination Problems in Graphs , 1993, Inf. Process. Lett..

[4]  Marthe Bonamy,et al.  Recognizing Graphs Close to Bipartite Graphs , 2017, MFCS.

[5]  Vadim V. Lozin,et al.  Dominating induced matchings in graphs containing no long claw , 2015, J. Graph Theory.

[6]  Charles Delorme,et al.  Efficient edge domination in regular graphs , 2008, Discret. Appl. Math..

[7]  Wayne Goddard,et al.  Independent domination in graphs: A survey and recent results , 2013, Discret. Math..

[8]  Sulamita Klein,et al.  Cycle transversals in perfect graphs and cographs , 2013, Theor. Comput. Sci..

[9]  Panos M. Pardalos,et al.  Feedback Set Problems , 2009, Encyclopedia of Optimization.

[10]  Andreas Brandstädt,et al.  Finding Dominating Induced Matchings in P9-Free Graphs in Polynomial Time , 2019, ArXiv.

[11]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[12]  S. Poljak A note on stable sets and colorings of graphs , 1974 .

[13]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[14]  Z. Tuza,et al.  Dominating cliques in P5-free graphs , 1990 .

[15]  Stefan Hougardy,et al.  Uniquely Colourable Graphs and the Hardness of Colouring Graphs of Large Girth , 1998, Combinatorics, Probability and Computing.

[16]  Michal Pilipczuk,et al.  Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs , 2017, SODA.

[17]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[18]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[19]  Andrea Munaro,et al.  On line graphs of subcubic triangle-free graphs , 2017, Discret. Math..

[20]  Andreas Brandstädt,et al.  Dominating Induced Matchings for P7-Free Graphs in Linear Time , 2011, Algorithmica.

[21]  Andreas Brandstädt,et al.  Finding Dominating Induced Matchings in $$P_8$$P8-Free Graphs in Polynomial Time , 2016, Algorithmica.

[22]  Marthe Bonamy,et al.  Independent Feedback Vertex Set for $$P_5$$P5-Free Graphs , 2018, Algorithmica.

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Ingo Schiermeyer,et al.  3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..

[25]  Geevarghese Philip,et al.  On Parameterized Independent Feedback Vertex Set , 2011, Theor. Comput. Sci..

[26]  Jinjiang Yuan,et al.  Partition the vertices of a graph into one independent set and one acyclic set , 2006, Discret. Math..

[27]  Michal Pilipczuk,et al.  Polynomial-time algorithm for Maximum Weight Independent Set on P6-free graphs , 2019, SODA.

[28]  Daniël Paulusma,et al.  Minimum connected transversals in graphs: New hardness results and tractable cases using the price of connectivity , 2017, Theor. Comput. Sci..

[29]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[30]  Takehiro Ito,et al.  Algorithms for the Independent Feedback Vertex Set Problem , 2015, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[31]  Nobuji Saito,et al.  NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .

[32]  Daniel Lokshtanov,et al.  Independent Set in P5-Free Graphs in Polynomial Time , 2014, SODA.

[33]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[34]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[35]  Jian Song,et al.  A Survey on the Computational Complexity of Coloring Graphs with Forbidden Subgraphs , 2014, J. Graph Theory.

[36]  Dieter Kratsch,et al.  On the restriction of some NP-complete graph problems to permutation graphs , 1985, FCT.

[37]  Maya Jakobine Stein,et al.  Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven Vertices , 2018, Comb..

[38]  Petr A. Golovach,et al.  Choosability of P5-Free Graphs , 2009, MFCS.

[39]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[40]  Andrea Munaro,et al.  Boundary classes for graph problems involving non-local properties , 2017, Theor. Comput. Sci..

[41]  Marthe Bonamy,et al.  Independent Feedback Vertex Sets for Graphs of Bounded Diameter , 2017, Inf. Process. Lett..

[42]  Ingo Schiermeyer,et al.  Three-colourability and forbidden subgraphs. II: polynomial algorithms , 2002, Discret. Math..

[43]  Saket Saurabh,et al.  Improved Algorithms and Combinatorial Bounds for Independent Feedback Vertex Set , 2017, IPEC.

[44]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[45]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .