Simulated maximum likelihood estimation of multivariate mixed‐Poisson regression models, with application

This paper proposes and implements simulated maximum likelihood estimation of bivariate count models with unrestricted correlation pattern of unobserved heterogeneity. The implementation incorporates both antithetic acceleration and adjustment for first-order simulation bias. Both the Monte Carlo simulation evidence and an application to health utilization data confirm that the method is reliable and feasible in data analysis.

[1]  John Hinde,et al.  Compound Poisson Regression Models , 1982 .

[2]  C. Gourieroux,et al.  Pseudo Maximum Likelihood Methods: Applications to Poisson Models , 1984 .

[3]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[4]  J. Geweke,et al.  Antithetic acceleration of Monte Carlo integration in Bayesian inference , 1988 .

[5]  Alain Monfort,et al.  Simulation Based Inference in Models with Heterogeneity , 1990 .

[6]  Ingram Olkin,et al.  Multivariate distributions generated from mixtures of convolution and product families , 1990 .

[7]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[8]  Walter J. Mayer,et al.  Determinants of Entry and Exit: An Application of the Compounded Bivariate Poisson Distribution to U. S. Industries, 1972-1977 , 1992 .

[9]  Miguel A. Delgado Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model , 1992, Econometric Theory.

[10]  S. Kocherlakota,et al.  Bivariate discrete distributions , 1992 .

[11]  A. Cameron,et al.  Tests of Independence in parametric Models With Applications and Illustrations , 1993 .

[12]  Paul A. Ruud,et al.  Handbook of Econometrics: Classical Estimation Methods for LDV Models Using Simulation , 1993 .

[13]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[14]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[15]  John Geweke,et al.  Monte carlo simulation and numerical integration , 1995 .

[16]  Bruno Crépon,et al.  Research and development, competition and innovation pseudo-maximum likelihood and simulated maximum likelihood methods applied to count data models with heterogeneity☆ , 1997 .

[17]  S. Chib,et al.  Posterior Simulation and Bayes Factors in Panel Count Data Models , 1998 .

[18]  J. Durbin,et al.  Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .

[19]  P. Deb,et al.  Demand for Medical Care by the Elderly: A Finite Mixture Approach , 1997 .

[20]  A. Colin Cameron,et al.  Bivariate Count Data Regression Using Series Expansions: With Applications , 1997 .

[21]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[22]  William H. Greene,et al.  FIML Estimation of Sample Selection Models for Count Data , 1997 .

[23]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[24]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data , 1998 .