Image enhancement and denoising by complex diffusion processes

The linear and nonlinear scale spaces, generated by the inherently real-valued diffusion equation, are generalized to complex diffusion processes, by incorporating the free Schrodinger equation. A fundamental solution for the linear case of the complex diffusion equation is developed. Analysis of its behavior shows that the generalized diffusion process combines properties of both forward and inverse diffusion. We prove that the imaginary part is a smoothed second derivative, scaled by time, when the complex diffusion coefficient approaches the real axis. Based on this observation, we develop two examples of nonlinear complex processes, useful in image processing: a regularized shock filter for image enhancement and a ramp preserving denoising process.

[1]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[2]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[3]  Petros Maragos,et al.  Nonlinear PDEs and Numerical Algorithms for Modeling Levelings and Reconstruction Filters , 1999, Scale-Space.

[4]  Yehoshua Y. Zeevi,et al.  Regularized Shock Filters and Complex Diffusion , 2002, ECCV.

[5]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[6]  Refractor Vision , 2000, The Lancet.

[7]  Francoise J. Preteux,et al.  Controlled anisotropic diffusion , 1995, Electronic Imaging.

[8]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[9]  Ron Kimmel,et al.  Efficient Beltrami Flow Using a Short Time Kernel , 2003, Scale-Space.

[10]  Y. Zeevi,et al.  Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .

[11]  OsherStanley,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[12]  Yehoshua Y. Zeevi,et al.  Complex Diffusion Processes for Image Filtering , 2001, Scale-Space.

[13]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[14]  Yehoshua Y. Zeevi,et al.  Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[16]  Rosenau Free-energy functionals at the high-gradient limit. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  Masao Nagasawa,et al.  Schrödinger equations and diffusion theory , 1993, Monographs in mathematics.

[18]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[19]  Rachid Deriche,et al.  Image coupling, restoration and enhancement via PDE's , 1997, Proceedings of International Conference on Image Processing.

[20]  Bart M. ter Haar Romeny,et al.  Linear Scale-Space I: Basic Theory , 1994, Geometry-Driven Diffusion in Computer Vision.

[21]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[22]  Yehoshua Y. Zeevi,et al.  Forward-and-backward diffusion processes for adaptive image enhancement and denoising , 2002, IEEE Trans. Image Process..

[23]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[24]  D. Jameson,et al.  Mach bands : quantitative studies on neural networks in the retina , 1966 .

[25]  T. Poggio,et al.  Fingerprints theorems for zero crossings , 1985 .

[26]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[27]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[28]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[29]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[31]  Frédéric Barbaresco,et al.  01 - Calcul des variations et analyse spectrale : équations de Fourier et de Burgers pour modèles autorégréssifs régularisés , 2000 .

[32]  Arridge,et al.  Dual echo MR image processing using multi-spectral probabilistic diffusion coupled with shock filters , 2000 .

[33]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[34]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[35]  Jean-Michel Morel,et al.  A Note on Two Classical Shock Filters and Their Asymptotics , 2001, Scale-Space.

[36]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[37]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.