Image enhancement and denoising by complex diffusion processes
暂无分享,去创建一个
[1] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[2] Bart M. ter Haar Romeny,et al. Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.
[3] Petros Maragos,et al. Nonlinear PDEs and Numerical Algorithms for Modeling Levelings and Reconstruction Filters , 1999, Scale-Space.
[4] Yehoshua Y. Zeevi,et al. Regularized Shock Filters and Complex Diffusion , 2002, ECCV.
[5] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[6] Refractor. Vision , 2000, The Lancet.
[7] Francoise J. Preteux,et al. Controlled anisotropic diffusion , 1995, Electronic Imaging.
[8] A. Grossmann,et al. Cycle-octave and related transforms in seismic signal analysis , 1984 .
[9] Ron Kimmel,et al. Efficient Beltrami Flow Using a Short Time Kernel , 2003, Scale-Space.
[10] Y. Zeevi,et al. Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .
[11] OsherStanley,et al. Feature-oriented image enhancement using shock filters , 1990 .
[12] Yehoshua Y. Zeevi,et al. Complex Diffusion Processes for Image Filtering , 2001, Scale-Space.
[13] Edward H. Adelson,et al. The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..
[14] Yehoshua Y. Zeevi,et al. Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[15] J. Koenderink. The structure of images , 2004, Biological Cybernetics.
[16] Rosenau. Free-energy functionals at the high-gradient limit. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[17] Masao Nagasawa,et al. Schrödinger equations and diffusion theory , 1993, Monographs in mathematics.
[18] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[19] Rachid Deriche,et al. Image coupling, restoration and enhancement via PDE's , 1997, Proceedings of International Conference on Image Processing.
[20] Bart M. ter Haar Romeny,et al. Linear Scale-Space I: Basic Theory , 1994, Geometry-Driven Diffusion in Computer Vision.
[21] Gjlles Aubert,et al. Mathematical problems in image processing , 2001 .
[22] Yehoshua Y. Zeevi,et al. Forward-and-backward diffusion processes for adaptive image enhancement and denoising , 2002, IEEE Trans. Image Process..
[23] Guido Gerig,et al. Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.
[24] D. Jameson,et al. Mach bands : quantitative studies on neural networks in the retina , 1966 .
[25] T. Poggio,et al. Fingerprints theorems for zero crossings , 1985 .
[26] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[27] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[28] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[29] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[30] L. Álvarez,et al. Signal and image restoration using shock filters and anisotropic diffusion , 1994 .
[31] Frédéric Barbaresco,et al. 01 - Calcul des variations et analyse spectrale : équations de Fourier et de Burgers pour modèles autorégréssifs régularisés , 2000 .
[32] Arridge,et al. Dual echo MR image processing using multi-spectral probabilistic diffusion coupled with shock filters , 2000 .
[33] L. Rudin,et al. Feature-oriented image enhancement using shock filters , 1990 .
[34] Ron Kimmel,et al. Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.
[35] Jean-Michel Morel,et al. A Note on Two Classical Shock Filters and Their Asymptotics , 2001, Scale-Space.
[36] M. Cross,et al. Pattern formation outside of equilibrium , 1993 .
[37] Joachim Weickert,et al. Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.