Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models.

The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between T = 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either Kohn-Sham density functional theory or a molecular mechanics force field to determine the system's potential energy. The latter Gibbs free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation Gibbs free energies agree very well with available experimental data.

[1]  Donald G Truhlar,et al.  Quantum mechanical continuum solvation models for ionic liquids. , 2012, The journal of physical chemistry. B.

[2]  C. Cramer,et al.  Resolution of a Challenge for Solvation Modeling: Calculation of Dicarboxylic Acid Dissociation Constants Using Mixed Discrete-Continuum Solvation Models. , 2012, The journal of physical chemistry letters.

[3]  D. Tobias,et al.  Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water. , 2011, The journal of physical chemistry. B.

[4]  C. Cramer,et al.  The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistry. , 2011, Physical chemistry chemical physics : PCCP.

[5]  D. Truhlar,et al.  How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States? , 2011, Journal of chemical theory and computation.

[6]  D. Marx,et al.  Aggregation-Induced Dissociation of HCl(H2O)4 Below 1 K: The Smallest Droplet of Acid , 2009, Science.

[7]  Hee-Seung Lee,et al.  Ab initio molecular dynamics studies of the liquid-vapor interface of an HCl solution. , 2009, The journal of physical chemistry. A.

[8]  D. Donaldson,et al.  Where does acid hydrolysis take place? , 2009, Physical chemistry chemical physics : PCCP.

[9]  Donald G. Truhlar,et al.  Performance of SM8 on a Test To Predict Small-Molecule Solvation Free Energies , 2008, The journal of physical chemistry. B.

[10]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[11]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[12]  R. Rousseau,et al.  Finite-temperature effects on the stability and infrared spectra of HCl(H2O)6 clusters. , 2007, The journal of physical chemistry. A.

[13]  D. Marx,et al.  Connecting structure to infrared spectra of molecular and autodissociated HCl--water aggregates. , 2007, The journal of physical chemistry. A.

[14]  C. Cramer,et al.  Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. , 2007, Journal of chemical theory and computation.

[15]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[16]  A. Morita,et al.  Molecular dynamics analysis of interfacial structures and sum frequency generation spectra of aqueous hydrogen halide solutions. , 2007, The journal of physical chemistry. A.

[17]  Kari Vahteristo,et al.  Re-evaluation of the Activity Coefficients of Aqueous Hydrochloric Acid Solutions up to a Molality of 16.0 mol·kg−1 Using the Hückel and Pitzer Equations at Temperatures from 0 to 50 °C , 2007 .

[18]  E. Meijer,et al.  First principles and experimental 1H NMR signatures of solvated ions: The case of HCl(aq). , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  M. McGrath,et al.  Vapor–liquid equilibria of water from first principles: comparison of density functionals and basis sets , 2006 .

[20]  C. Cramer,et al.  Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. , 2006, The journal of physical chemistry. B.

[21]  A. Soper,et al.  Eigen versus Zundel complexes in HCl-water mixtures. , 2006, The Journal of chemical physics.

[22]  Bin Chen,et al.  Microscopic structure and solvation in dry and wet octanol. , 2006, The journal of physical chemistry. B.

[23]  Donald G Truhlar,et al.  Predicting aqueous free energies of solvation as functions of temperature. , 2006, The journal of physical chemistry. B.

[24]  Fawzi Mohamed,et al.  Simulating fluid-phase equilibria of water from first principles. , 2006, The journal of physical chemistry. A.

[25]  Donald G Truhlar,et al.  SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. , 2005, Journal of chemical theory and computation.

[26]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[27]  Evgeniy M. Myshakin,et al.  Spectral Signatures of Hydrated Proton Vibrations in Water Clusters , 2005, Science.

[28]  J. Kress,et al.  Ab initio molecular dynamics and quasichemical study of H+(aq). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[30]  L. Pusztai,et al.  On the structure of aqueous hydrogen chloride solutions , 2005 .

[31]  Joost VandeVondele,et al.  Isobaric-isothermal monte carlo simulations from first principles: application to liquid water at ambient conditions. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Bin Chen,et al.  Liquid Water from First Principles: Investigation of Different Sampling Approaches , 2004 .

[33]  A. Soper,et al.  Ions in water: the microscopic structure of a concentrated HCl solution. , 2004, The Journal of chemical physics.

[34]  Peter Kritzer,et al.  Corrosion in high-temperature and supercritical water and aqueous solutions: a review , 2004 .

[35]  K. Laasonen,et al.  Structure and dynamics of concentrated hydrochloric acid solutions. A first principles molecular dynamics study , 2004 .

[36]  Lev D. Gelb,et al.  Monte Carlo simulations using sampling from an approximate potential , 2003 .

[37]  Donald G. Truhlar,et al.  Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory , 2003 .

[38]  I. Williams,et al.  A hybrid quantum mechanical molecular mechanical method: Application to hydration free energy calculations , 2002 .

[39]  V. Buch,et al.  Discrete stages in the solvation and ionization of hydrogen chloride adsorbed on ice particles , 2002, Nature.

[40]  K. Schaber,et al.  Vapour–liquid equilibria of binary and ternary aqueous systems with HCl, HBr and CaCl2 at highly diluted vapour phases , 2001 .

[41]  M. Gruszkiewicz,et al.  Conductivity Measurements of Dilute Aqueous HCl Solutions to High Temperatures and Pressures Using a Flow-Through Cell , 2001 .

[42]  P. Cummings,et al.  H3O+/Cl− ion-pair formation in high-temperature aqueous solutions , 2000 .

[43]  D. Salahub,et al.  Using a classical potential as an efficient importance function for sampling from an ab initio potential , 2000 .

[44]  Martin Cuma,et al.  A multi-state empirical valence bond model for acid base chemistry in aqueous solution , 2000 .

[45]  D. Tobias,et al.  Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols , 2000, Science.

[46]  V. A. Pokrovskii Calculation of the standard partial molal thermodynamic properties and dissociation constants of aqueous HCl0 and HBr0 at temperatures to 1000°C and pressures to 5 kbar , 1999 .

[47]  F. Hirata,et al.  Revisiting the Acid−Base Equilibrium in Aqueous Solutions of Hydrogen Halides: Study by the ab Initio Electronic Structure Theory Combined with the Statistical Mechanics of Molecular Liquids , 1999 .

[48]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[49]  J. I. Siepmann,et al.  Calculating Gibbs free energies of transfer from Gibbs ensemble Monte Carlo simulations , 1998 .

[50]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[51]  Noam Agmon Structure of Concentrated HCl Solutions , 1998 .

[52]  J. Hynes,et al.  Molecular Mechanism of HCl Acid Ionization in Water: Ab Initio Potential Energy Surfaces and Monte Carlo Simulations , 1997 .

[53]  A. Tanioka,et al.  A vapor pressure model for aqueous and non-aqueous solutions of single and mixed electrolyte systems , 1997 .

[54]  M. Klein,et al.  Ab initio study of aqueous hydrochloric acid , 1997 .

[55]  P. Rossky,et al.  Continuum Electrostatics Model for Ion Solvation and Relative Acidity of HCl in Supercritical Water , 1996 .

[56]  J. Hynes,et al.  Molecular Dynamics Simulation of Hydrochloric Acid Ionization at the Surface of Stratospheric Ice , 1996, Science.

[57]  P. Rossky,et al.  Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water. 2. Relative Acidity of HCl , 1996 .

[58]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[59]  Berend Smit,et al.  Computer simulations of vapor-liquid phase equilibria of n-alkanes , 1995 .

[60]  D. Powell,et al.  The structure of Cl- in aqueous solution: an experimental determination of gClH(r) and gClO(r) , 1993 .

[61]  Berend Smit,et al.  Direct simulation of phase equilibria of chain molecules. , 1992 .

[62]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[63]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[64]  G. Tilton,et al.  Geochim. cosmochim. acta , 1989 .

[65]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[66]  D. A. Palmer,et al.  Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures , 1988 .

[67]  P. Brimblecombe,et al.  The solubility and behaviour of acid gases in the marine aerosol , 1988 .

[68]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[69]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[70]  M. Molina,et al.  Antarctic Stratospheric Chemistry of Chlorine Nitrate, Hydrogen Chloride, and Ice: Release of Active Chlorine , 1987, Science.

[71]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[72]  T. Seward,et al.  The ion-pair constant and other thermodynamic properties of HCl up to 350°C , 1987 .

[73]  Ralph G. Pearson,et al.  Ionization potentials and electron affinities in aqueous solution , 1986 .

[74]  P. Brimblecombe,et al.  The dissociation constant and henry's law constant of HCl in aqueous solution , 1986 .

[75]  A. Ben-Naim Solvation thermodynamics of completely dissociable solutes , 1985 .

[76]  T. Sako,et al.  Vapor pressures of binary (water-hydrogen chloride, -magnesium chloride, and -calcium chloride) and ternary (water-magnesium chloride-calcium chloride) aqueous solutions , 1985 .

[77]  P. Brimblecombe,et al.  Potential degassing of hydrogen chloride from acidified sodium chloride droplets , 1985 .

[78]  W. J. Mcelroy,et al.  The dissociation constant and Henry's law constant of HCl in aqueous solution , 1985 .

[79]  T. Sako,et al.  SALT EFFECTS ON VAPOR-LIQUID EQUILIBRIA FOR VOLATILE STRONG ELECTROLYTE-WATER SYSTEMS , 1984 .

[80]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[81]  A. Narten,et al.  Diffraction pattern and structure of aqueous hydrochloric acid solutions at 20 °C , 1975 .

[82]  G. McGuire,et al.  Vapor‐liquid equilibria of the hydrochloric acid‐water system , 1970 .

[83]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[84]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[85]  Gösta. Åkerlöf,et al.  Thermodynamics of Concentrated Aqueous Solutions of Hydrochloric Acid , 1937 .

[86]  R. Robinson The dissociation constant of hydrochloric acid , 1936 .

[87]  H. S. Harned,et al.  The Thermodynamics of Aqueous Hydrochloric Acid Solutions from Electromotive Force Measurements , 1933 .

[88]  W. Wynne-Jones CXXXIII.—The behaviour of hydrogen chloride in different solvents , 1930 .

[89]  E. Rideal,et al.  LXXXI.—The vapour pressure of hydrochloric acid , 1924 .

[90]  S. Bates,et al.  THE VAPOR PRESSURES AND FREE ENERGIES OF THE HYDROGEN HALIDES IN AQUEOUS SOLUTION; THE FREE ENERGY OF FORMATION OF HYDROGEN CHLORIDE. , 1919 .