Low-cost GPS/GLONASS Precise Positioning Algorithm in Constrained Environment. (Algorithme de positionnement précis en environnement contraint basé sur un récepteur bas-coût GPS/GLONASS)

Le GNSS (Global Navigation Satellite System), et en particulier sa composante actuelle le systeme americain GPS et le systeme russe GLONASS, sont aujourd'hui utilises pour des applications geodesiques afin d'obtenir un positionnement precis, de l'ordre du centimetre. Cela necessite un certain nombre de traitements complexes, des equipements couteux et eventuellement des complements au sol des systemes GPS et GLONASS. Ces applications sont aujourd'hui principalement realisees en environnement « ouvert » et ne peuvent fonctionner en environnement plus contraint. L'augmentation croissante de l'utilisation du GNSS dans des domaines varies va voir emerger de nombreuses applications ou le positionnement precis sera requis (par exemple des applications de transport/guidage automatique ou d'aide a la conduite necessitant des performances importantes en terme de precision mais aussi en terme de confiance dans la position –l'integrite- et de robustesse et disponibilite). D'autre part, l'arrivee sur le marche de recepteurs bas-couts (inferieur a 100 euros) capables de poursuivre les signaux provenant de plusieurs constellations et d'en delivrer les mesures brutes laisse entrevoir des avancees importantes en termes de performance et de democratisation de ces techniques de positionnement precis. Dans le cadre d'un utilisateur routier, l'un des enjeux du positionnement precis pour les annees a venir est ainsi d'assurer sa disponibilite en tout terrain, c'est-a-dire dans le plus grand nombre d'environnements possibles, dont les environnements degrades (vegetation dense, environnement urbain, etc.) Dans ce contexte, l'objectif de la these a ete d'elaborer et d'optimiser des algorithmes de positionnement precis (typiquement bases sur la poursuite de la phase de porteuse des signaux GNSS) afin de prendre en compte les contraintes liees a l'utilisation d'un recepteur bas cout et a l'environnement. En particulier, un logiciel de positionnement precis (RTK) capable de resoudre les ambiguites des mesures de phase GPS et GLONASS a ete developpe. La structure particuliere des signaux GLONASS (FDMA) requiert notamment un traitement specifiques des mesures de phase decrit dans la these afin de pouvoir isoler les ambiguites de phase en tant qu'entiers. Ce traitement est complique par l'utilisation de mesures provenant d'un recepteur bas cout dont les canaux GLONASS ne sont pas calibres. L'utilisation d'une methode de calibration des mesures de code et de phase decrite dans la these permet de reduire les biais affectant les differentes mesures GLONASS. Il est ainsi demontre que la resolution entiere des ambiguites de phase GLONASS est possible avec un recepteur bas cout apres calibration de celui-ci. La faible qualite des mesures, du fait de l'utilisation d'un recepteur bas cout en milieu degrade est prise en compte dans le logiciel de positionnement precis en adoptant une ponderation des mesures specifique et des parametres de validation de l'ambiguite dependant de l'environnement. Enfin, une methode de resolution des sauts de cycle innovante est presentee dans la these, afin d'ameliorer la continuite de l'estimation des ambiguites de phase. Les resultats de 2 campagnes de mesures effectuees sur le peripherique Toulousain et dans le centre-ville de Toulouse ont montre une precision de 1.5m 68% du temps et de 3.5m 95% du temps dans un environnement de type urbain. En milieu semi-urbain type peripherique, cette precision atteint 10cm 68% du temps et 75cm 95% du temps. Finalement, cette these demontre la faisabilite d'un systeme de positionnement precis bas-cout pour un utilisateur routier. ABSTRACT : GNSS and particularly GPS and GLONASS systems are currently used in some geodetic applications to obtain a centimeter-level precise position. Such a level of accuracy is obtained by performing complex processing on expensive high-end receivers and antennas, and by using precise corrections. Moreover, these applications are typically performed in clear-sky environments and cannot be applied in constrained environments. The constant improvement in GNSS availability and accuracy should allow the development of various applications in which precise positioning is required, such as automatic people transportation or advanced driver assistance systems. Moreover, the recent release on the market of low-cost receivers capable of delivering raw data from multiple constellations gives a glimpse of the potential improvement and the collapse in prices of precise positioning techniques. However, one of the challenge of road user precise positioning techniques is their availability in all types of environments potentially encountered, notably constrained environments (dense tree canopy, urban environments…). This difficulty is amplified by the use of low-cost receivers and antennas, which potentially deliver lower quality measurements. In this context the goal of this PhD study was to develop a precise positioning algorithm based on code, Doppler and carrier phase measurements from a low-cost receiver, potentially in a constrained environment. In particular, a precise positioning software based on RTK algorithm is described in this PhD study. It is demonstrated that GPS and GLONASS measurements from a low-cost receivers can be used to estimate carrier phase ambiguities as integers. The lower quality of measurements is handled by appropriately weighting and masking measurements, as well as performing an efficient outlier exclusion technique. Finally, an innovative cycle slip resolution technique is proposed. Two measurements campaigns were performed to assess the performance of the proposed algorithm. A horizontal position error 95th percentile of less than 70 centimeters is reached in a beltway environment in both campaigns, whereas a 95th percentile of less than 3.5 meters is reached in urban environment. Therefore, this study demonstrates the possibility of precisely estimating the position of a road user using low-cost hardware.

[1]  Nobuaki Kubo,et al.  Evaluation and Calibration of Receiver Inter-channel Biases for RTK-GPS/GLONASS , 2010 .

[2]  Dmitry Kozlov,et al.  Statistical Characterization of Hardware Biases in GPS+GLONASS Receivers , 2000 .

[3]  Werner Gurtner,et al.  RINEX - The Receiver Independent Exchange Format - Version 3.00 , 2007 .

[4]  J. Shi,et al.  A Fast Integer Ambiguity Resolution Method for PPP , 2012 .

[5]  Donghyun Kim,et al.  A New Carrier-Phase Multipath Observable for GPS Real-Time Kinematics, Based on Between Receiver Dynamics , 2005 .

[6]  Byron A. Iijima,et al.  Real-Time Point Positioning Performance Evaluation of Single-Frequency Receivers Using NASA's Global Differential GPS System , 2004 .

[7]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[8]  Boonsap Witchayangkoon,et al.  Elements of GPS precise point positioning , 2000 .

[9]  I. Nakajima,et al.  A visibility study in Japanese urban area to collect environment profile for HEOs , 2004, Proceedings. 6th International Workshop on Enterprise Networking and Computing in Healthcare Industry - Healthcom 2004 (IEEE Cat. No.04EX842).

[10]  Lambert Wanninger,et al.  Combined Processing of GPS, GLONASS, and SBAS Code Phase and Carrier Phase Measurements , 2007 .

[11]  P. Enge,et al.  Failure Detection and Exclusion via Range Consensus , 2008 .

[12]  Richard B. Ong,et al.  Reliability of Combined GPS/GLONASS Ambiguity Resolution , 2010 .

[13]  Richard B. Langley,et al.  GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues , 2000 .

[14]  Sandra Verhagen,et al.  On the Foundation of the Popular Ratio Test for GNSS Ambiguity Resolution , 2004 .

[15]  Andreas Wieser,et al.  Short Static GPS Sessions: Robust Estimation Results , 2002, GPS Solutions.

[16]  Chaochao Wang,et al.  Development of a Low-cost GPS-based Attitude Determination System , 2003 .

[17]  Tomoji Takasu,et al.  Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB , 2009 .

[18]  Akio Yasuda,et al.  Cycle Slip Detection and Fixing by MEMS-IMU/GPS Integration for Mobile Environment RTK-GPS , 2008 .

[19]  G. Lachapelle,et al.  A Comparison of the FASF and Least- Squares Search Algorithms for on-the-Fly Ambiguity Resolution , 1995 .

[20]  A. Farah Comparison Of GPS/Galileo Single Frequency Ionospheric Models With Vertical Tec Maps , 2008 .

[21]  Flavien Mercier,et al.  Zero-difference Integer Ambiguity Fixing on Single Frequency Receivers , 2009 .

[22]  Sandra Verhagen,et al.  On GNSS Ambiguity Acceptance Tests , 2007 .

[23]  Eun-Hwan Shin,et al.  Accuracy Improvement of Low Cost INS/GPS for Land Applications , 2002 .

[24]  Nobuaki Kubo,et al.  Instantaneous RTK Positioning with Altitude-aiding for ITS Applications , 2007 .

[25]  Tomas Beran,et al.  Single-frequency, single-receiver terrestrial and spaceborne point positioning , 2008 .

[26]  F. V. Graas,et al.  Precise Velocity Estimation Using a Stand-Alone GPS Receiver , 2004 .

[27]  Richard B. Langley A Primer on GPS Antennas , 1998 .

[28]  Sunil Bisnath,et al.  Current State of Precise Point Positioning and Future Prospects and Limitations , 2009 .

[29]  Lei Yang,et al.  Implementation of Wide-Area Broadcast NRTK on a Communication Satellite Platform , 2010 .

[30]  Patrick C. Fenton,et al.  The Theory and Performance of NovAtel Inc.'s Vision Correlator , 2005 .

[31]  J.-P. Berthias,et al.  Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination , 2007 .

[32]  F. Boon,et al.  Mitigating Short-Delay Multipath: a Promising New Technique , 2001 .

[33]  J. Kouba,et al.  GPS Precise Point Positioning Using IGS Orbit Products , 2001 .

[34]  Nobuaki Kubo,et al.  RTK-GPS Reliability Improvement in Dense Urban Areas , 2011 .

[35]  Shuang Du An Inertial Aided Cycle Slip Detection and Identification Method for Integrated PPP GPS/MEMS IMU System , 2011 .

[36]  Sébastien Carcanague,et al.  Real-Time Geometry-Based Cycle Slip Resolution Technique for Single-Frequency PPP and RTK , 2012 .

[37]  Changdon Kee,et al.  Temporal and Spatial Decorrelation Error Reduction by a Compact Network RTK , 2009 .

[38]  Lambert Wanninger,et al.  Carrier-phase inter-frequency biases of GLONASS receivers , 2012, Journal of Geodesy.

[39]  THE DESCRIPTION OF THE MAIN TECHNIQUES OF RESOLVING THE PHASE AMBIGUITIES, THE ADVANTAGES, DISADVANTAGES AND THEIR CHARACTERISTICS , 2011 .

[40]  Chris Rizos,et al.  1 Performance Analysis of Position-Domain Hatch Filter , 2003 .

[41]  Salos Andrés,et al.  Integrity monitoring applied to the reception of GNSS signals in urban environments , 2012 .

[42]  R. Langley,et al.  UNB Neutral Atmosphere Models : Development and Performance , 2006 .

[43]  Paul Collins,et al.  Precise Point Positioning for Real-time Determination of Co-Seismic Crustal Motion , 2009 .

[44]  Hesham Rakha,et al.  ESTIMATING VEHICLE FUEL CONSUMPTION AND EMISSIONS BASED ON INSTANTANEOUS SPEED AND ACCELERATION LEVELS , 2002 .

[45]  Gerhard Beutler,et al.  Rapid static positioning based on the fast ambiguity resolution approach , 1990 .

[46]  Dmitry Kozlov,et al.  Instant RTK cm with Low Cost GPS+GLONASS C/A Receivers , 1997 .

[47]  Alexander Steingass,et al.  Differences in Multipath Propagation between Urban and Suburban Environments , 2008 .

[48]  Marek Ziebart,et al.  Instantaneous Doppler-aided RTK positioning with single frequency receivers , 2010, IEEE/ION Position, Location and Navigation Symposium.

[49]  Alison Brown Multipath Rejection Through Spatial Processing , 2000 .

[50]  Paul Collins,et al.  Isolating and Estimating Undifferenced GPS Integer Ambiguities , 2008 .

[51]  Sergey Revnivykh,et al.  GLONASS Status and Modernization , 2011 .

[52]  M. Petovello Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation , 2003 .

[53]  S. Banville,et al.  Antenna Rotation and its Effects on Kinematic Precise Point Positioning , 2010 .

[54]  L. Wanninger,et al.  SBAS-based Single and Dual Frequency Precise Point Positioning , 2012 .

[56]  G. Gendt,et al.  Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations , 2008 .

[57]  Nobuaki Kubo,et al.  Advantage of velocity measurements on instantaneous RTK positioning , 2009 .

[58]  Jinling Wang,et al.  Carrier Phase Processing Issues for High Accuracy Integrated GPS / Pseudolite / INS Systems , 2003 .

[59]  Andreas Lehner,et al.  A novel channel model for land mobile satellite navigation , 2005 .

[60]  Landon Urquhart,et al.  An analysis of multi-frequency carrier phase linear combinations for GNSS , 2008 .

[61]  Olivier Julien,et al.  Undifferenced ambiguity resolution applied to RTK , 2011 .

[62]  Ryosuke Shibasaki,et al.  Evaluation of Positioning Service Level for Intelligent Transportation Systems in Urban Area Using a Simulation Tool , 2003 .

[63]  Heidi Kuusniemi,et al.  User-Level Reliability and Quality Monitoring in Satellite-Based Personal Navigation , 2005 .

[64]  Chris Rizos,et al.  GPS and GLONASS Integration: Modeling and Ambiguity Resolution Issues , 2001, GPS Solutions.

[65]  Nobuaki Kubo,et al.  Instantaneous RTK Positioning Based on User Velocity Measurements , 2008 .

[66]  Oliver Montenbruck,et al.  Two Approaches to Precise Kinematic GPS Positioning with Miniaturized L1 Receivers , 2007 .

[67]  Michael C. Olynik,et al.  Temporal Characteristics of GPS Error Sources and Their Impact on Relative Positioning , 2002 .

[68]  Damien Kubrak Hybridisation of a GPS Receiver with Low-Cost Sensors for Personal Positioning in Urban Environment. , 2007 .

[69]  Dennis Milbert Influence of Pseudorange Accuracy on Phase Ambiguity Resolution in Various GPS Modernization Scenarios , 2005 .

[70]  Peter Teunissen,et al.  A theorem on maximizing the probability of correct integer estimation. , 1999 .

[71]  Jinling Wang,et al.  A Comparison of Outlier Detection Procedures and Robust Estimation Methods in GPS Positioning , 2009, Journal of Navigation.

[72]  Christoph Günther,et al.  Three frequency linear combinations for Galileo , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[73]  Bernd Eissfeller,et al.  Multipath Performance Analysis for Future GNSS Signals , 2004 .

[74]  Yukihiro Kubo,et al.  Detection of Cycle Slips and Multipath in GNSS RTK Precise Point Positioning , 2011 .

[75]  Donghyun Kim,et al.  Instantaneous real-time cycle-slip correction for quality control of GPS carrier-phase measurements , 2002 .

[76]  C. Rizos,et al.  An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK , 2013, GPS Solutions.

[77]  Richard B. Langley,et al.  Pseudorange Multipath Mitigation By Means of Multipath Monitoring and De-Weighting , 2001 .

[78]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[79]  Richard B. Langley,et al.  Satellite and Receiver Phase Bias Calibration for Undifferenced Ambiguity Resolution , 2008 .

[80]  M. Pratt,et al.  Single-Epoch Integer Ambiguity Resolution with GPS L1-L2 Carrier Phase Measurements , 1997 .

[81]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .