Implant intraoculaire et chirurgie de la cataracte : comparaison de l’adhésion bactérienne et du risque d’endophtalmie selon le biomatériau

Resume La chirurgie de la cataracte permet une parfaite rehabilitation visuelle grâce a l’insertion intraoculaire d’un implant en lieu et place du cristallin. Toutefois, 0,04 % a 0,32 % des interventions realisees se compliquent encore d’une endophtalmie. Les sources de contamination de l’œil au cours de la chirurgie sont extremement variees. Une des etiologies principales est cependant l’adhesion, puis le developpement d’un biofilm bacterien sur les lentilles intraoculaires implantees. La responsabilite du biomateriau constituant l’implant intraoculaire dans la promotion de l’adhesion bacterienne et consecutivement dans l’augmentation du risque d’endophtalmie fait l’objet d’un interet croissant. Il s’agit en effet de determiner parmi les biomateriaux actuellement a la disposition du chirurgien ceux qui favoriseraient ou non l’adhesion bacterienne. L’analyse des etudes epidemiologiques et experimentales, tant in vitro qu’in vivo confirme que l’adhesion bacterienne est bien variable suivant le biomateriau composant l’implant intraoculaire. Memes si les conditions methodologiques et experimentales different et rendent difficiles la comparaison des resultats, de grandes constantes peuvent etre extraites de ces donnees. Il semblerait ainsi que certains biomateriaux tels que le silicone soient associes a une adhesion bacterienne plus importante et a un risque relatif d’endophtalmie superieur. D’un point de vue experimental, des biomateriaux tels que le silicone et l’acrylique hydrophobe, materiaux les plus hydrophobes, favoriseraient l’adhesion bacterienne de facon statistiquement significative comparativement a d’autres biomateriaux tels que l’hydrogel ou l’acrylique hydrophile, polymeres les plus hydrophiles. Cette affinite pour l’un ou l’autre des biomateriaux est surtout explicable par l’analyse de leur caractere hydrophile/hydrophobe dominant les autres forces gouvernant les interactions entre une bacterie et un support. Cependant, toutes ces etudes restent insuffisantes et ne permettent pas d’associer formellement un biomateriau a un risque plus eleve d’endophtalmie. Tous les mecanismes conduisant a partir d’une adhesion bacterienne sur un implant intraoculaire au developpement d’une endophtalmie ne sont en effet pas encore elucides.

[1]  T. Wong,et al.  Risk factors of acute endophthalmitis after cataract extraction: a case-control study in Asian eyes , 2003, The British journal of ophthalmology.

[2]  J. Kirwan,et al.  Intraocular lens implants and risk of endophthalmitis , 1998, The British journal of ophthalmology.

[3]  A. Shibl,et al.  Heparin and heparin-surface-modification reduce Staphylococcus epidermidis adhesion to intraocular lenses , 2004, International Ophthalmology.

[4]  T. Pakula,et al.  Material Properties of Various Intraocular Lenses in an Experimental Study , 2003, Ophthalmologica.

[5]  M. Busin,et al.  Intraocular lens removal from eyes with chronic low‐grade endophthalmitis , 1995, Journal of cataract and refractive surgery.

[6]  M. Rabilloud,et al.  Influence of intraocular lens material on the development of acute endophthalmitis after cataract surgery? , 2008, Eye.

[7]  B. Jansen,et al.  Late onset endophthalmitis associated with intraocular lens: a case of molecularly proved S. epidermidis aetiology. , 1991, The British journal of ophthalmology.

[8]  C. R. Arciola,et al.  In vitro adhesion of Staphylococcus epidermidis on heparin‐surface‐modified intraocular lenses , 1994, Journal of cataract and refractive surgery.

[9]  P. Dilly,et al.  Bacterial adhesion to intraocular lenses , 1989, Journal of cataract and refractive surgery.

[10]  A. Pinna,et al.  In vitro adherence of Staphylococcus epidermidis to polymethyl methacrylate and acrysof intraocular lenses. , 2000, Ophthalmology.

[11]  Y. Missirlis,et al.  Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. , 2004, European cells & materials.

[12]  P. Griffiths,et al.  Adherence of Staphylococcus epidermidis to intraocular lenses. , 1989, The British journal of ophthalmology.

[13]  M. Galin,et al.  A new model to assess staphylococcal adhesion to intraocular lenses under in vitro flow conditions. , 1998, Biomaterials.

[14]  J. Freney,et al.  In-Vitro Study of Bacterial Adherence to Different Types of Intraocular Lenses , 2002, Drug development and industrial pharmacy.

[15]  T. Amzallag,et al.  Biomatériaux dans la chirurgie du cristallin , 2007 .

[16]  S. Cramton,et al.  Biofilm Development in Staphylococcus , 2004 .

[17]  Z. Zakov,et al.  Chronic Propionibacterium endophthalmitis after extracapsular cataract extraction and intraocular lens implantation. , 1986, American journal of ophthalmology.

[18]  S. Mccormick,et al.  Influence of haptic materials on the adherence of staphylococci to intraocular lenses. , 1993, Archives of ophthalmology.

[19]  U. Stenevi,et al.  Endophthalmitis following cataract surgery in Sweden. The 1998 national prospective survey. , 2002, Acta ophthalmologica Scandinavica.

[20]  A. Behrens,et al.  The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population increased between 1994 and 2001. , 2005, Ophthalmology.

[21]  Jeffrey J. Heys,et al.  A Boussinesq Model of Natural Convection in the Human Eye and the Formation of Krukenberg's Spindle , 2002, Annals of Biomedical Engineering.

[22]  S. Kobayakawa,et al.  Biofilm Formation on Hydrophilic Intraocular Lens Material , 2006, Current eye research.

[23]  M. Amon,et al.  Bacterial adhesion to rigid and foldable posterior chamber intraocular lenses: in vitro study , 2003, Journal of cataract and refractive surgery.

[24]  M. Refojo,et al.  Reduced bacterial adhesion to heparin‐surface‐modified intraocular lenses , 1993, Journal of cataract and refractive surgery.

[25]  R. Brubaker,et al.  Aqueous humor flow during sleep. , 1984, Investigative ophthalmology & visual science.

[26]  G. Barrett,et al.  In vitro bacterial adherence to hydrogel and poly(methyl methacrylate) intraocular lenses , 1996, Journal of cataract and refractive surgery.

[27]  J. Freney,et al.  In vivo study of bacterial adhesion to five types of intraocular lenses. , 2002, Investigative ophthalmology & visual science.

[28]  H. Flynn,et al.  Delayed-onset pseudophakic endophthalmitis. , 1991, American journal of ophthalmology.

[29]  M. Busin,et al.  Bacterial growth is significantly enhanced on foldable intraocular lenses. , 1994, Archives of ophthalmology.

[30]  J. C. Simmons,et al.  Coagulase-negative staphylococci isolated from cerebrospinal fluid shunts: importance of slime production, species identification, and shunt removal to clinical outcome. , 1987, The Journal of infectious diseases.

[31]  S. Kobayakawa,et al.  Biofilm formation by Staphylococcus epidermidis on intraocular lens material. , 2006, Investigative ophthalmology & visual science.

[32]  J. Menikoff,et al.  A case-control study of risk factors for postoperative endophthalmitis. , 1991, Ophthalmology.

[33]  W. Solbach,et al.  Influence of a new surface modification of intraocular lenses with fluoroalkylsilan on the adherence of endophthalmitis-causing bacteria in vitro , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[34]  U. Stenevi,et al.  Endophthalmitis following cataract surgery in Sweden: national prospective survey 1999-2001. , 2005, Acta ophthalmologica Scandinavica.

[35]  B. Seitz,et al.  Influence of fibronectin on the adherence of Staphylococcus epidermidis to coated and uncoated intraocular lenses , 2008, Journal of cataract and refractive surgery.

[36]  M. Gilmore,et al.  Biofilm Formation by Enterococcus faecalis on Intraocular Lens Material , 2004, Current eye research.

[37]  K. Wiklund,et al.  Endophthalmitis after cataract surgery: risk factors relating to technique and events of the operation and patient history: a retrospective case-control study. , 1998, Ophthalmology.

[38]  G. Gettinby,et al.  Prophylaxis of postoperative endophthalmitis following cataract surgery: Results of the ESCRS multicenter study and identification of risk factors , 2007, Journal of cataract and refractive surgery.

[39]  R. Écochard,et al.  Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions , 2008, Journal of cataract and refractive surgery.

[40]  A. Arias‐Puente,et al.  In vitro adhesion of Staphylococcus epidermidis to intraocular lenses , 2000, Journal of cataract and refractive surgery.

[41]  D. Meisler,et al.  Propionibacterium-associated endophthalmitis after extracapsular cataract extraction. Review of reported cases. , 1989, Ophthalmology.

[42]  D. Ahearn,et al.  In vitro adherence of Pseudomonas aeruginosa to four intraocular lenses , 1998, Journal of cataract and refractive surgery.

[43]  Y. Nagaki,et al.  Bacterial endophthalmitis after small‐incision cataract surgery: Effect of incision placement and intraocular lens type , 2003, Journal of cataract and refractive surgery.

[44]  Y. An,et al.  Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. , 1998, Journal of biomedical materials research.

[45]  G. Lina,et al.  Biofilm formation on intraocular lenses by a clinical strain encoding the ica locus: a scanning electron microscopy study. , 2003, Investigative ophthalmology & visual science.